Limit Comparison Test This is one of the most useful tests for determining convergence. Suppose $a_{n}>0$ and $b_{n}>0$ for all $n>N$ where N is a positive integer.

- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c, 0<c<\infty$, then $\sum a_{n}$ and $\sum b_{n}$ behave the same.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, and b_{n} converges, then $\sum a_{n}$ converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, and b_{n} diverges, then $\sum a_{n}$ diverges.

1.

$$
\sum_{n=1}^{\infty} \frac{3 n+2}{(n+1)^{2}}
$$

3.

$$
\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}-2 n}
$$

