1. Two cars are approaching an intersection. One is 1 mile south of the intersection and is moving at a constant speed of 40 mph . At the same time, the other car is 2 miles east of the intersection and is moving at a constant speed of 10 mph .
(a) Express the distance d between the cars as a function of time t.
(b) For what value of t is d smallest?
2. A farmer wants make a rectangular garden by forming three sides of fencing against an existing wall. She has 100 feet of fencing.
$\overbrace{x=\text { length }}^{\overbrace{2}} d=$ distance from wall
(a) Express an area Function $f(x)$ that computes the area of the garden based on the length x, and state its domain.
(b) Express an area Function $g(x)$ that computes the area of the garden based on the distance d from the wall, and state its domain.
(c) Use your calculator to graph and discover the range of possible areas of the garden
(d) What is the best distance d for the most area?
3. A rectangle has one corner on the graph of $f(x)=9-x^{2}$, another at the origin, a third on the positive y-axis, and the fourth on the positive x-axis.
(a) Express the area A as a function of x.
(b) For what value of x is A the largest?
(c) What is the domain of A ?
(d) What is the range of A ?
4. Let $P=(x, f(x))$ be a point on the graph of $f(x)=x^{2}-25$.
(a) Express the distance d from P to the point $(0,0)$ as a function of x.
(b) What is d if $x=2$?
