# Chapter 9.1

**Infinite Series** 

Mathematically, a sequence is defined as a function whose domain is the set of positive integers. Although a sequence is a function, it is common to represent sequences by subscript notation rather than by the standard function notation. For instance, in the sequence

1, 2, 3, 4, ..., 
$$n$$
, ...  
 $\downarrow \qquad \downarrow \qquad Sequence$   
 $a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$ 

$$\{a_n\} = \{3 + (-1)^n\}$$

$$\{b_n\} = \left\{\frac{n}{1-2n}\right\}$$

# Definition of the Limit of a Sequence and Figure 9.1

#### **Definition of the Limit of a Sequence**

Let L be a real number. The **limit** of a sequence  $\{a_n\}$  is L, written as

 $\lim_{n\to\infty}a_n=L$ 

if for each  $\varepsilon > 0$ , there exists M > 0 such that  $|a_n - L| < \varepsilon$  whenever n > M. If the limit *L* of a sequence exists, then the sequence **converges** to *L*. If the limit of a sequence does not exist, then the sequence **diverges**.



# Theorem 9.1 Limit of a Sequence

### **THEOREM 9.1** Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

$$\lim_{x\to\infty} f(x) = L.$$
  
If  $\{a_n\}$  is a sequence such that  $f(n) = a_n$  for every positive integer *n*, then  
$$\lim_{n\to\infty} a_n = L.$$

Find the limit of the sequence whose nth term is

$$a_n = \left(1 + \frac{1}{n}\right)^n.$$

# Theorem 9.2 Properties of Limits of Sequences

**THEOREM 9.2 Properties of Limits of Sequences** 

Let 
$$\lim_{n \to \infty} a_n = L$$
 and  $\lim_{n \to \infty} b_n = K$ .

1.  $\lim_{n\to\infty} (a_n \pm b_n) = L \pm K$ 

3.  $\lim_{n\to\infty} (a_n b_n) = LK$ 

2. 
$$\lim_{n \to \infty} ca_n = cL$$
, *c* is any real number

4. 
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{K}, \ b_n \neq 0 \text{ and } K \neq 0$$

$$\{a_n\} = \{3 + (-1)^n\}$$

$$\{b_n\} = \left\{\frac{n}{1-2n}\right\}$$

(Use Th 9.1, then L'Hôpital)

### Theorem 9.3 Squeeze Theorem for Sequences

#### **THEOREM 9.3 Squeeze Theorem for Sequences**

#### If

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} b_n$$

and there exists an integer N such that  $a_n \leq c_n \leq b_n$  for all n > N, then

 $\lim_{n\to\infty} c_n = L.$ 



$$\{c_n\} = \left\{ (-1)^n \frac{1}{n!} \right\} \text{ converges!}$$

eventually (for  $n \ge 4$ ),

$$2^n < n!$$
 so  $\frac{1}{2^n} > \frac{1}{n!}$ 

For  $n \ge 4$ ,  $(-1)^n / n!$  is squeezed between  $-1/2^n$  and  $1/2^n$ . Figure 9.2

# Theorem 9.4 Absolute Value Theorem



**Proof** Consider the two sequences  $\{|a_n|\}$  and  $\{-|a_n|\}$ . Because both of these sequences converge to 0 and

 $-|a_n| \le a_n \le |a_n|$ 

you can use the Squeeze Theorem to conclude that  $\{a_n\}$  converges to 0.

#### EXAMPLE 6 Finding the nth Term of a Sequence

Find a sequence  $\{a_n\}$  whose first five terms are

 $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \ldots$ 

and then determine whether the particular sequence you have chosen converges or diverges.

(Use Th 9.1, then L'Hôpital)

$$\{a_n\} = \left\{ (-1)^n \left(\frac{3^n - 1}{n!}\right) \right\}$$
 converges to 0

(Use Th 9.4, then growth on n!>3^n)

## Definition of a Monotonic Sequence

### **Definition of a Monotonic Sequence**

A sequence  $\{a_n\}$  is **monotonic** if its terms are nondecreasing

$$a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq \cdots$$

or if its terms are nonincreasing

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$$

Determine whether each sequence having the given nth term is monotonic.

**a.** 
$$a_n = 3 + (-1)^n$$
 **b.**  $b_n = \frac{2n}{1+n}$  **c.**  $c_n = \frac{n^2}{2^n - 1}$ 

# Definition of a Bounded Sequence

#### **Definition of a Bounded Sequence**

- **1.** A sequence  $\{a_n\}$  is **bounded above** if there is a real number M such that  $a_n \leq M$  for all n. The number M is called an **upper bound** of the sequence.
- **2.** A sequence  $\{a_n\}$  is **bounded below** if there is a real number N such that  $N \le a_n$  for all n. The number N is called a **lower bound** of the sequence.
- **3.** A sequence  $\{a_n\}$  is **bounded** if it is bounded above and bounded below.

#### **THEOREM 9.5 Bounded Monotonic Sequences**

If a sequence  $\{a_n\}$  is bounded and monotonic, then it converges.

#### EXAMPLE 9 Bounded and Monotonic Sequences

- a. The sequence {a<sub>n</sub>} = {1/n} is both bounded and monotonic and so, by Theorem 9.5, must converge.
- b. The divergent sequence {b<sub>n</sub>} = {n<sup>2</sup>/(n + 1)} is monotonic, but not bounded. (It is bounded below.)
- c. The divergent sequence  $\{c_n\} = \{(-1)^n\}$  is bounded, but not monotonic.