Parallel Lines

Hon. Geometry
FrChris Thiel, OFMCap
2016

Definitions

- Parallel- coplanar lines that never intersect
- Skew--lines that never intersect because they are not coplanar

Transversal-~ A line that goes across 2 or more lines

Angles

Same vs Alternate Side (of transversal)

Corresponding Angles
Iff $m \| n, \angle 1 \cong \angle 5, \angle 2 \cong \angle 6, \angle 3 \cong \angle 7, \angle 4 \cong \angle 8$
Consecutive (Same Síde) Interior Angles
Iff $m \| n, \angle 4+\angle 6=180^{\circ} \quad$ Iff $m \| n, \angle 3+\angle 5=180^{\circ}$
Alternate Interior Angles
Iff $m \| n, \angle 3 \cong \angle 6 \quad$ Iff $m \| n, \angle 4 \cong \angle 5$
Alternate Exterior Angles
Iff $m \| n, \angle 1 \cong \angle 8$
Iff $m \| n, \angle 2 \cong \angle 7$

Euclid's 5th Postulate

If consecutive (same side) interior angles are not supplementary, the lines are not parallel

Our Book's approach Postulate:

If and only if the lines are parallel, then Corresponding angles are congruent

Theorem: If and only if the lines are parallel, then Alternate Interior Angles are Congruent

Given: $m \| n$ Prove: $\angle 3 \cong \angle 6$

Alt Int \angle 's are \cong

$$
\begin{aligned}
& \angle 3 \cong \angle 7 \\
& \angle 6 \cong \angle 7 \\
& \angle 3 \cong \angle 6
\end{aligned}
$$

Given: $\angle 3 \cong \angle 6$
Prove: $m \| n$

$$
\begin{aligned}
& \angle 3 \cong \angle 6 \\
& \angle 6 \cong \angle 7 \\
& \angle 3 \cong \angle 7
\end{aligned}
$$

Theorem: If and only if the lines are parallel, then Consecutive (Same Side) Interior Angles are Supplementary

Given: $m \| n$
Prove: $\angle 3+\angle 5=180^{\circ}$

CI \angle 's are Supp

$$
\begin{gathered}
\angle 3+\angle 1=180^{\circ} \\
\angle 5=\angle 1 \\
\angle 3+\angle 5=180^{\circ}
\end{gathered}
$$

Given: $\angle 3+\angle 5=180^{\circ}$

$$
\text { Prove: } m \| n
$$

$$
\begin{aligned}
\angle 3+\angle 5 & =180^{\circ} \\
\angle 3+\angle 1 & =180^{\circ} \\
\angle 3+\angle 5 & =\angle 3+\angle 1 \\
\angle 5 & =\angle 1
\end{aligned}
$$

$$
m \| n
$$

Example:

Given: $\angle 1 \cong \angle 2 ; \angle 4 \cong \angle 5$
Prove: $\overline{P Q} \| \overline{R S}$

$$
\begin{aligned}
& \angle 1 \cong \angle 2 \\
& \angle 2 \cong \angle 5 \\
& \angle 5 \cong \angle 4 \\
& \angle 1 \cong \angle 4 \\
& \overline{P Q} \| \overline{R S}
\end{aligned}
$$

Given
Vert. \angle 's are \cong
Given
Transitive
Alt Int \angle 's s are \cong

