# Parallel Lines

Hon. Geometry Fr Chris Thiel, OFMCap 2016

#### Definitions

 Parallel-- coplanar línes that never íntersect

 Skew--lines that never intersect because they are not coplanar



## Transversal-- A líne that goes across 2 or more línes

Same vs Alternate Side Angles (of transversal) Interior vs Exterior (of parallel) п Corresponding Angles Iff  $m||n, \angle 1 \cong \angle 5$ ,  $\angle 2 \cong \angle 6$ ,  $\angle 3 \cong \angle 7$ ,  $\angle 4 \cong \angle 8$ Consecutive (Same Side) Interior Angles Iff  $m||n, \angle 4 + \angle 6 = 180^{\circ}$ Iff  $m||n, \angle 3 + \angle 5 = 180^{\circ}$ Alternate Interior Angles Iff  $m || n, \angle 4 \cong \angle 5$ Iff  $m||n, \angle 3 \cong \angle 6$ Alternate Exterior Angles Iff  $m || n, \angle 1 \cong \angle 8$ Iff  $m || n, \angle 2 \cong \angle 7$ 

### Euclid's 5th Postulate



If consecutive (same side) interior angles are not supplementary, the lines are not parallel



If and only if the lines are parallel, then Corresponding angles are congruent Theorem: If and only if the lines are parallel, then Alternate Interior Angles are Congruent



Theorem: If and only if the lines are parallel, then Consecutive (Same Side) Interior Angles are Supplementary

Given:  $m \parallel n$ Prove:  $\angle 3 + \angle 5 = 180^{\circ}$ 

 $\angle 3 + \angle 1 = 180^{\circ}$ 

 $\angle 5 = \angle 1$ 

 $\angle 3 + \angle 5 = 180^{\circ}$ 

CI∠'s are Supp

Given:  $\angle 3 + \angle 5 = 180^{\circ}$ Prove: $m \parallel n$ 

$$\begin{array}{l} \angle 3 + \angle 5 = 180^{\circ} \\ \angle 3 + \angle 1 = 180^{\circ} \\ \angle 3 + \angle 5 = \angle 3 + \angle 1 \\ \angle 5 = \angle 1 \\ m \parallel n \end{array}$$

#### Example:

Given:  $\angle 1 \cong \angle 2; \angle 4 \cong \angle 5$ Prove:  $\overline{PQ} \parallel \overline{RS}$ 



 $\angle 1 \cong \angle 2$  $\angle 2 \cong \angle 5$  $\angle 5 \cong \angle 4$  $\angle 1 \cong \angle 4$  $\overline{PQ} \parallel \overline{RS}$ 

Given Vert.  $\angle$  's are  $\cong$ Given Transitive Alt Int  $\angle$ 's s are  $\cong$