\qquad

Honors Geometry Chapters 1-4

Multiple Choice

Identify the choice that best completes the statement or answers the question.
___ 1. Which postulate or theorem can be used to determine the length of $\overline{R T}$?

a. ASA Congruence Postulate
c. SSS Congruence Postulate
b. AAS Congruence Theorem
d. SAS Congruence Postulate
2. Given: $\overline{B D}$ bisects $\angle A B C, \overline{A B} \cong \overline{B C}$

Prove: $\overline{A D} \cong \overline{C D}$

Proof:
Statements
Reasons

1. $\overline{A B} \cong \overline{B C}$
2. Given
3. $\overline{B D} \cong \overline{B D}$
4. Reflexive Prop. of \cong
5. $\overline{B D}$ bisects $\angle A B C$
6. Given
4.?
7. Def. of bisector
8. $\triangle A B D \cong \triangle C B D$
9. SAS Congruence Postulate
10. $\overline{A D} \cong \overline{C D}$
11. Corresponding Parts of

Congruent Triangles are Congruent

The missing step in the proof is \qquad
a. $\angle B A D \cong \angle B C D$
b. $\angle B D A \cong \angle B D C$
c. $\angle A B D \cong \angle C B D$
d. $\angle A B C \cong \angle C B A$

Short Answer

3.

Name the intersection of $\overleftrightarrow{A L}$ and $\overleftrightarrow{L O}$
4. The midpoint of $\overline{F G}$ is $M(-1,3)$. One endpoint is $F(-2,5)$. Find the coordinates of endpoint G.
5. The endpoints of two segments are given. Find the exact length of each segment. Tell whether the segments are congruent.
$\overline{W X} ; W(1,2), X(5,1)$
$\overline{Y Z} ; Y(4,1), Z(2,4)$
6. Given that $\angle X Y Z$ and $\angle L M N$ are complementary angles, find $m \angle X Y Z$ and $m \angle L M N$.

7. $\angle L M N$ and $\angle N M O$ form a linear pair. Find the measures of the angles if $m \angle L M N=(3 x+10)^{\circ}$ and $m \angle N M O=(2 x+45)^{\circ}$.
8. Draw a concave pentagon.
9. Tell whether the statement is always, sometimes, or never true.

A hexagon is equiangular but not equilateral.
10. Tell whether the statement is always, sometimes, or never true.

The complement of the supplement of an angle is an acute angle.
11. Sketch the fourth figure in the pattern below.

12. Write the if-then form of the statement "A poet is a writer."
13. Write the converse of the statement "A poet is a writer."
14. Write the inverse of the statement "A poet is a writer."
15. Write the contrapositive of the statement "A poet is a writer."
16. Rewrite the definition as a biconditional.

In an equilateral polygon, all sides are congruent.
17. What conclusions can you make using the true statement?

The company will increase production if the demand for a product increases. Tony will work more hours if the company increases production.
18. Complete the proof.

GIVEN: $\overline{B C} \cong \overline{E F}$
$\overline{A C} \cong \overline{E G}$

PROVE: $F G=10$

Statements	Reasons
14. $A C=A B+B C$	
15. $A B=10, B C=3$	Substitution Property of Equality
16.	Simplify.
17. $\overline{A C \cong \overline{E G}, \overline{B C} \cong \overline{E F}}$	-
19. $A C=E G, B C=E F$	-
20. $E G=13, E F=3$	Segment Addition Postulate
21. -	
22. $13=3+F G$	-
23. $F G=10$	-

19. Identify the pairs of angles as corresponding, alternate interior, alternate exterior, consecutive interior, or vertical angles.
$\angle 1$ and $\angle 4$

\qquad
20. GIVEN: $m \angle B C A=78^{\circ}$

$$
m \angle C F G=102^{\circ}
$$

PROVE: $m \| n$

Statements	Reasons	
1. $\angle F C D \cong \angle B C A$		
2.	Definition of Congruent Angles	
3. $m \angle B C A=78^{\circ}$		
4. $m \angle F C D=78^{\circ}$	Given	
5. -		
6. $78^{\circ}+102^{\circ}=180^{\circ}$		
7. $m \angle F C D+m \angle C F G=180^{\circ}$	Definition of Supplementary	
8.		
9. $m \\| n$		

What is the missing reason in row 3 ?
21. Write an equation of the line that passes through point P and is parallel to the line with the given equation.
$P(3,3), y=-\frac{1}{2} x+3$
22. Write an equation of the line that passes through point P and is parallel to the line with the given equation.

$$
P(-2,1), y=\frac{1}{3} x-1
$$

23. Write an equation of the line that passes through point P and is perpendicular to the line with the given equation.
$P(6,2), y=3 x+3$
24. Write an equation of the line that passes through point P and is perpendicular to the line with the given equation.

$$
P(-3,0), y=2 x-4
$$

25. Graph the equation.

$$
-4 x+8 y=12
$$

26. Use the Distance Formula to find the exact distance between the two parallel lines.

27. Use the Distance Formula to find the exact distance between the two parallel lines.

28. A triangle has the given vertices. Classify the triangle by its sides.
$A(1,1), B(2,4), C(3,1)$
29. Find the values of x and y.

30. Find the values of x and y.

31. Find the values of x and y.

32. Find the values of x and y.

33. Tell whether a rigid motion can move the solid figure onto the dashed figure. If so, describe the transformation(s) that you can use. If not, explain why the figures are not congruent.

34. Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use.

$$
\triangle A B D \cong \triangle C D B
$$

35. Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use.
$\Delta E F G \cong \triangle L N M$

36. Is it possible to prove $\triangle A B C \cong \triangle D E F$ using the given information? If so, state the postulate or theorem that you would use.
$\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}, \overline{B C} \cong \overline{E F}$
37. An image and the translation are given. Sketch the original figure.
$(x, y) \rightarrow(x+5, y-1)$

38. An image and the translation are given. Sketch the original figure.
$(x, y) \rightarrow(x-5, y+2)$

39. Is Figure A a rotation of Figure B? If so, give the angle and direction of rotation.

40. The stencil below on the left is used to create the design shown on the right. Describe how to reflect the stencil to move it from A to C.

41. Find the length of $\overline{L M}$. State the postulate or theorem you use.

Line l is the perpendicular bisector of $\overline{M N}$.
42. Find the value of x.

43. Find $m \angle M$.

44. Find the value of x.

45. Find $m \angle M$.

46. Use the measurements given in the diagram to find the distance x across the river.

Essay

47. Refer to the figure below.

a. Is there enough information to know whether $\angle F E G$ is acute, obtuse, or a right angle? Explain.
b. If $m \angle F$ is less than 45°, what type of angle is $\angle F E G$? Explain.
48. A diagonal of a polygon is a line segment that connects non-consecutive vertices of the polygon.
a. Draw square $A B C D$ and its diagonals. Are the diagonals congruent? Explain.
b. Draw a regular pentagon $A B C D E$ and two diagonals from vertex A. Are these 2 diagonals congruent? Explain.
c. How many diagonals does a regular pentagon have? Are all of the diagonals congruent? Justify your reasoning.

Other

49. Using a straightedge and compass, construct the bisector of an angle. Label all the important points of the original and the construction. Then, using the triangle congruence postulates and corresponding parts of congruent triangles, write a paragraph proof to verify that the construction for the bisector of an angle is valid.
50. Using a straightedge and compass, construct a copy of an obtuse angle. Label all the important points of the original and the construction. Then, using the triangle congruence postulates and corresponding parts of congruent triangles, write a paragraph proof showing that the constructed angle is congruent to the original angle.
51. Given: $\angle B A C \cong \angle D A C, \angle D C A \cong \angle B C A$

Prove: $\overline{B C} \cong \overline{D C}$

52. Given: $\angle B A C \cong \angle D A C, \angle B \cong \angle D$

Prove: $\overline{B C} \cong \overline{D C}$

53. Given: $\overline{B C} \cong \overline{D A}, \angle 1 \cong \angle 2$

Prove: $\triangle B E A \cong \triangle D E C$

54. Given: $\overline{P R}$ and $\overline{Q S}$ bisect each other

Prove: $\triangle P Q R \cong \triangle R S P$

55. Explain how you can prove that the hypotenuses of the right triangles $\triangle A B C$ and $\triangle D C B$ are congruent.

Honors Geometry Chapters 1-4
 Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: Level B REF: HLGM0316

NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle | length \mid segment \mid AAS MSC: DOK $1 \quad$ NOT: 978-0-547-31534-8
2. ANS: C PTS: 1 DIF: Level A REF: MLGE0235

NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.c | NCTM.PSSM.00.MTH.9-12.REA. 3 |
NCTM.PSSM.00.MTH.9-12.REA. 4 TOP: Lesson 4.7 Use Congruent Triangles
KEY: congruent \mid proof \mid bisector \quad MSC: DOK $2 \quad$ NOT: 978-0-547-31534-8

SHORT ANSWER

3. ANS:

Point L

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 1
TOP: Chapter 1 Test, Form C MSC: DOK 1
4. ANS:
$(0,1)$

PTS: 1 DIF: Level C TOP: Chapter 1 Test, Form C
MSC: DOK 2
5. ANS:
$W X=\sqrt{17} ; Y Z=\sqrt{13} ; \overline{W X} \not \equiv \overline{Y Z}$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.CO. 9 | NT.CCSS.MTH.10.9-12.G.GPE. 7
TOP: Chapter 1 Test, Form C MSC: DOK 2
6. ANS:
$m \angle X Y Z=24^{\circ} ; m \angle L M N=66^{\circ}$

PTS: 1 DIF: Level C TOP: Chapter 1 Test, Form C
MSC: DOK 2
7. ANS:
$m \angle L M N=85^{\circ} ; m \angle N M O=95^{\circ}$

PTS: 1 DIF: Level C TOP: Chapter 1 Test, Form C
MSC: DOK 2
8. ANS:

Sample answer:

PTS: 1
DIF: Level C
TOP: Chapter 1 Test, Form C
MSC: DOK 1
9. ANS:
sometimes

PTS: 1 DIF: Level C TOP: Chapter 1 Test, Form C
MSC: DOK 1
10. ANS:
always

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 1
TOP: Chapter 1 Test, Form C MSC: DOK 1
11. ANS:

PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
12. ANS:

If a person is a poet, then he is a writer.

PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 1
13. ANS:

If a person is a poet, then he is a writer.

PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
14. ANS:

If a person is not a poet, then he is not a writer.

PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
15. ANS:

If a person is not a writer, then he is not a poet.

PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
16. ANS:

A polygon is equilateral if and only if all of its sides are congruent.
PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
17. ANS:

Tony will work more hours if the demand for a product increases.
PTS: 1 DIF: Level C TOP: Chapter 2 Test, Form C
MSC: DOK 2
18. ANS:
14. Segment Addition Postulate
15. Given
16. $A C=10+3$
17. $A C=13$
18. Given
19. Definition of Congruent Segments
20. Substitution Property of Equality
21. $E G=E F+F G$
22. Substitution Property of Equality
23. Subtraction Property of Equality

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 9
TOP: Chapter 2 Test, Form C MSC: DOK 4
19. ANS:
vertical
PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 9
TOP: Chapter 3 Test, Form C MSC: DOK 1
20. ANS:

Given
PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 9
TOP: Chapter 3 Test, Form C MSC: DOK 2
21. ANS:
$y=-\frac{1}{2} x+4 \frac{1}{2}$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.GPE. 5 | NT.CCSS.MTH.10.9-12.A.CED. 2
TOP: Chapter 3 Test, Form C MSC: DOK 2
22. ANS:
$y=\frac{1}{3} x+1 \frac{2}{3}$
PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.GPE. 5 | NT.CCSS.MTH.10.9-12.A.CED. 2
TOP: Chapter 3 Test, Form C MSC: DOK 2
23. ANS:
$y=-\frac{1}{3} x+4$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.GPE. 5 | NT.CCSS.MTH.10.9-12.A.CED. 2
TOP: Chapter 3 Test, Form C MSC: DOK 2
24. ANS:
$y=-\frac{1}{2} x-1 \frac{1}{2}$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.GPE. 5 | NT.CCSS.MTH.10.9-12.A.CED. 2
TOP: Chapter 3 Test, Form C MSC: DOK 2
25. ANS:

PTS: 1
DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.A.CED. 2 | NT.CCSS.MTH.10.9-12.F.IF.7.a
TOP: Chapter 3 Test, Form C MSC: DOK 2
26. ANS:
$\sqrt{5}$

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.GPE. 7
TOP: Chapter 3 Test, Form C MSC: DOK 2
27. ANS:
$2 \sqrt{10}$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.GPE. 7
TOP: Chapter 3 Test, Form C
MSC: DOK 2
28. ANS:
isosceles

PTS: 1
DIF: Level C
TOP: Chapter 4 Test, Form C
MSC: DOK 2
29. ANS:
$x=75, y=60$

PTS: 1
DIF: Level C TOP: Chapter 4 Test, Form C
MSC: DOK 2
30. ANS:
$x=80, y=60$

PTS: 1 DIF: Level C TOP: Chapter 4 Test, Form C
MSC: DOK 2
31. ANS:
$x=5, y=10$

PTS: 1 DIF: Level C TOP: Chapter 4 Test, Form C
MSC: DOK 2
32. ANS:
$x=2, y=3$

PTS: 1 DIF: Level C TOP: Chapter 4 Test, Form C
MSC: DOK 2
33. ANS:

No; a rotation does not map one figure onto the other, because corresponding sides are not congruent.

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.CO. 6 | NT.CCSS.MTH.10.9-12.G.CO. 7
TOP: Chapter 4 Test, Form C MSC: DOK 2
34. ANS:
yes; SAS

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 10
TOP: Chapter 4 Test, Form C MSC: DOK 2
35. ANS:
yes; HL

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 10
TOP: Chapter 4 Test, Form C MSC: DOK 2
36. ANS:
yes; SSS
PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 10
TOP: Chapter 4 Test, Form C MSC: DOK 2
37. ANS:

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 2
TOP: Chapter 4 Test, Form C MSC: DOK 2
38. ANS:

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 2
TOP: Chapter 4 Test, Form C MSC: DOK 2
39. ANS:
yes; 90° clockwise
PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 6
TOP: Chapter 4 Test, Form C MSC: DOK 2
40. ANS:
reflect in the x-axis, then reflect in the y-axis or reflect in the y-axis, then reflect in the x-axis

PTS: 1 DIF: Level C NAT: NT.CCSS.MTH.10.9-12.G.CO. 6
TOP: Chapter 4 Test, Form C MSC: DOK 2
41. ANS:
$L M=290 ;$ ASA Congruence Postulate

PTS: 1 DIF: Level A REF: HLGM0327 NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle \mid congruent \mid ASA
MSC: DOK 1 NOT: 978-0-547-31534-8
42. ANS:

7

PTS: 1 DIF: Level B REF: BS022250
TOP: Lesson 4.7 Use Congruent Triangles
KEY: linear | equation | triangle | perpendicular bisector \quad MSC: DOK 2
NOT: 978-0-547-31534-8
43. ANS:
68°

PTS: 1 DIF: Level B REF: BS022251
TOP: Lesson 4.7 Use Congruent Triangles
KEY: solve \mid linear \mid equation \mid angle \mid triangle \mid perpendicular bisector
MSC: DOK 2 NOT: 978-0-547-31534-8
44. ANS:

12

PTS: 1 DIF: Level B REF: BS022252
TOP: Lesson 4.7 Use Congruent Triangles
KEY: solve | linear | equation | triangle \mid perpendicular bisector
MSC: DOK 2 NOT: 978-0-547-31534-8
45. ANS:
64°

PTS: 1 DIF: Level B REF: BS022253
TOP: Lesson 4.7 Use Congruent Triangles
KEY: solve | linear | equation | triangle | angle measure \mid perpendicular bisector
MSC: DOK 2 NOT: 978-0-547-31534-8
46. ANS:

4 m

PTS: 1 DIF: Level B REF: 7f54d2b9-cdbb-11db-b502-0011258082f7
TOP: Lesson 4.7 Use Congruent Triangles
KEY: Congruent triangles | indirect measure
MSC: DOK 2
NOT: 978-0-547-31534-8

ESSAY

47. ANS:
a. No. There is no information about the measures of angles F and G.
b. Obtuse. If $\angle F$ is less than $45^{\circ}, \angle F E H$ is greater than 45°. Since the 2 triangles are congruent by SAS, $\angle G E H$ is greater than 45°. Therefore, $\angle F E G$ is greater than 90°, which means it is obtuse.

PTS: 1 DIF: Level B REF: MLGE0125
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.a
TOP: Lesson 4.7 Use Congruent Triangles
KEY: obtuse | triangle | information | congruent | SAS MSC: DOK 3
NOT: 978-0-547-31534-8
48. ANS:
a. Yes. Since a square has 4 right angles, $\angle D A B \cong \angle A B C$. Since a square has 4 equal sides, $\overline{D A} \cong \overline{A B}$ and $\overline{A B} \cong \overline{B C} . \triangle D A B \cong \triangle A B C$ by the SAS Congruence Postulate. Therefore, $\overline{A C} \cong \overline{B D}$ because corresponding parts of $\cong \Delta s$ are \cong See diagram below.
b. Yes. Since $A B C D E$ is a regular pentagon, $\overline{A B} \cong \overline{A E}, \overline{B C} \cong \overline{E D}$, and $\angle B \cong \angle E . \triangle A B C \cong \triangle A E D$ by the SAS Congruence Postulate. Therefore, $\overline{A C} \cong \overline{A D}$ because corresponding parts of $\cong \Delta s$ are \cong See diagram below.
c. 5 , yes. You can use the SAS Congruence Postulate to show that any two triangles that have a diagonal as a side are congruent. You can then use corresponding parts of Δs are congruent to show that all of the diagonals are congruent.

PTS: 1
DIF: Level C REF: GEO.04.06.ER. 09
NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5 LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.a
TOP: Lesson 4.7 Use Congruent Triangles
KEY: Extended Response | Diagonal | Polygon | Congruent | CPCTC
MSC: DOK 3 NOT: 978-0-547-31534-8

OTHER

49. ANS:

Students' proofs should use the SSS Congruence Postulate to show that the two triangles are congruent. The corresponding sides along the sides of the original triangle and the corresponding sides extending out to the point on the angle bisector are congruent because both sides in the pairs were created by the same arc. The third sides of the triangles are shared between them, and so are congruent to each other by the reflexive property. After the triangles are proven congruent by SSS, students should use corresponding parts of congruent triangles to prove that the corresponding angles are congruent.Therefore, the angle is bisected.

PTS: 1 DIF: Level C REF: MLGE0002 NAT: NT.CCSS.MTH.10.9-12.G.CO. 12
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.c | NCTM.PSSM.00.MTH.9-12.REA. 3 |
NCTM.PSSM.00.MTH.9-12.REA. 4 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle \mid construction \mid congruent \mid proof \mid paragraph \mid CPCTC
MSC: DOK 4 NOT: 978-0-547-31534-8
50. ANS:

Students' proofs should explain how all three segments of the construction are copied and are therefore congruent to the segments in the original angle. They should then use the SSS Congruence Postulate to show that the two triangles are congruent. Next, they should use corresponding parts of congruent triangles to prove that the corresponding angles are congruent.

PTS: 1 DIF: Level C REF: MLGE0002B
NAT: NT.CCSS.MTH.10.9-12.G.CO.12 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle \mid construction \mid congruent \mid proof \mid paragraph \mid CPCTC
MSC: DOK 4 NOT: 978-0-547-31534-8
51. ANS:

Statements Reasons

1. $\angle B A C \cong \angle D A C, \angle D C A \cong \angle B C A$ 1. Given
2. $\overline{A C} \cong \overline{A C} \quad$ 2. Reflexive properpty of congruence
3. $\triangle A B C \cong \triangle A D C \quad$ 3. ASA Congruence Postulate
4. $\overline{B C} \cong \overline{D C}$
5. Corresponding parts of congruent $\Delta \mathrm{s}$ are congruent

PTS: 1 DIF: Level B REF: MLGM0017
NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.c | NCTM.PSSM.00.MTH.9-12.REA. 3 |
NCTM.PSSM.00.MTH.9-12.REA. 4 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangles \mid congruence \quad MSC: DOK $4 \quad$ NOT: 978-0-547-31534-8
52. ANS:

Statements
Reasons

1. $\angle B A C \cong \angle D A C, \angle B \cong \angle D \quad$ 1. Given
2. $\overline{A C} \cong \overline{A C}$
3. $\triangle A B C \cong \triangle A D C$
4. Reflexive Property
5. AASCongruence Theorem
6. $\overline{B C} \cong \overline{D C}$
7. Corresponding Parts of Congruent

Triangles are Congruent

PTS: 1 DIF: Level B REF: MLGE0237 NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.c | NCTM.PSSM.00.MTH.9-12.REA. 3 |
NCTM.PSSM.00.MTH.9-12.REA. 4 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle \mid congruence \mid AAS \mid CPCTC \quad MSC: DOK 4
NOT: 978-0-547-31534-8
53. ANS:
$\angle B E C \cong \angle D E A$ by vertical angles. $\triangle B E C \cong \triangle D E A$ by AAS. Then, because corresponding parts of congruent triangles are congruent, $\overline{B E} \cong \overline{D E}$, and $\overline{A E} \cong \overline{C E} . \angle B E A \cong \angle D E C$ by vertical angles, so $\triangle B E A \cong \triangle D E C$ by SAS .

PTS: 1 DIF: Level C REF: MLGE0239 NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.c | NCTM.PSSM.00.MTH.9-12.REA. 3 |
NCTM.PSSM.00.MTH.9-12.REA. 4 TOP: Lesson 4.7 Use Congruent Triangles
KEY: triangle \mid proof \mid CPCTC \quad MSC: DOK $4 \quad$ NOT: 978-0-547-31534-8
54. ANS:

Statements
$\overline{P R}$ and $\overline{Q S}$ bisect each other
T is the midpoint of $\overline{P R}$ and $\overline{Q S}$
$\overline{P T} \cong \overline{R T}$ and $\overline{Q T} \cong \overline{S T}$
$\angle P T Q \cong \angle R T S$ and $\angle P T S \cong \angle R T Q$
$\Delta P T Q \cong \Delta R T S$ and $\triangle P T S \cong \Delta R T Q$
$\overline{P Q} \cong \overline{R S}$ and $\overline{Q R} \cong \overline{S P}$
$\overline{P R} \cong \overline{R P}$
$\Delta P Q R \cong \Delta R S P$

PTS: 1 DIF: Level C
NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.ALG.2.b | NCTM.PSSM.00.MTH.9-12.GEO.1.a |
NCTM.PSSM.00.MTH.9-12.GEO.1.b | NCTM.PSSM.00.MTH.9-12.GEO.1.c |
NCTM.PSSM.00.MTH.9-12.REA. 3 | NCTM.PSSM.00.MTH.9-12.REA. 4
TOP: Lesson 4.7 Use Congruent Triangles
KEY: Proof | CPCTC | Congruent | Triangle | Quadrilateral| Diagonal
MSC: DOK 4 NOT: 978-0-547-31534-8
55. ANS:

You can use the SAS Congruence Postulate to prove that $\triangle A B C \cong \triangle D C B$. Since corresponding parts of congruent triangles are congruent, $\overline{A C} \cong \overline{D B}$.

PTS: 1 DIF: Level A REF: GEO.04.06.SR. 07
NAT: NT.CCSS.MTH.10.9-12.G.SRT. 5
LOC: NCTM.PSSM.00.MTH.9-12.GEO.1.b \| NCTM.PSSM.00.MTH.9-12.GEO.1.c |
NCTM.PSSM.00.MTH.9-12.REA. 3 | NCTM.PSSM.00.MTH.9-12.REA. 4
TOP: Lesson 4.7 Use Congruent Triangles
KEY: Short Response | Right | Triangle | Congruent | SAS MSC: DOK 3
NOT: 978-0-547-31534-8

