Your Personally Illustrated Examples of Definitions, Postulates, and Theorems of Quarter 1

This first quarter we have begun our journey of making mathematical proofs. This quarter's important Definitions, Postulates and Theorems often used in proofs are listed in the next few pages of this pdf document. For each:

1. Write out the definition, postulate, or theorem (try to make it a If-then statement).
2. Draw an example diagram to illustrate the hypothesis of the definition, postulate, or theorem.
3. State your example's conclusion based on the definition, postulate, or theorem you are illustrating.

Example:

First we find the Ruler Postulate on page 19:

Postulate 1.4-1 Ruler Postulate

The points on a line can be paired, one-to-one, with a real number. The real number that corresponds to a point is called the coordinate of the point.
The above allows us to calculate distance. The distance between points A and B is the absolute value of the difference of their coordinates.
We use the notation $A B$ for distance or the length of $\overline{A B}$.

$$
\stackrel{x_{1}}{\stackrel{A}{x_{1}}} \stackrel{B}{x_{2}} A B=\left|x_{2}-x_{1}\right|
$$

1. Write it as a conditional ("if-then") statement (when possible):
"If you place a number line between two points, the distance between the points is the (absolute value of the) difference between their coordinates"
2. Draw the hypothesis (feel free to draw your own here)

3. State the conclusion $X Y=|5-2|=3$.

Chapter 1

1. $\S 1.2$ Definitions, page 9
(a) Geometry:
(b) Logic:
(c) Definition:
(d) The difference of a Postulate and an Axiom:
(e) Theorem:
2. §1.3 Important Notation and Definitions for Points, Lines and Planes
(a) Point
(b) Line
(c) Segment (or Line Segment)
(d) Angle
(e) Ray
(f) Plane
(g) Space
(h) opposite rays
(i) intersection
(j) colinear
(k) coplanar
(l) congruent
3. §1.4: Measure of Segments and Angles
(a) coordinate
(b) distance
(c) congruent
(d) midpoint
(e) bisect
(f) the difference between $\overleftrightarrow{A B}, \overrightarrow{A B}, \overrightarrow{A B}$, and $A B$
4. Ruler Postulate (p. 19)
5. Segment Addition Postulate (p. 21)
6. Protractor Postulate (p. 26)
7. Angle Addition Postulate (p. 28)
8. §1.6 Angle Pairs and Their Relationships
(a) Adjacent Angles
(b) Vertical Angles (p. \qquad)
(c) Linear Pair (p. \qquad)
(d) Complement/Complementary Angles (p. \qquad)
(e) Supplement/Supplementary Angles (p. \qquad)
(f) Angle Bisector (p. 34)

Chapter 2 - Reasoning and Proofs

9. §2.1 Review: Perimeter, Circumference, and Area
(a) Square
(b) Rectangle
(c) Triangle
(d) Circle
10. §2.3 Conditional Statements
(a) hypothesis
(b) conclusion
(c) negation
11. Truth Tables and Conditional Statements
(a) Inverse
(b) Converse
(c) Contrapositive
12. §2.4
(a) Biconditional Statement
(b) Good Definition
13. §2.5 Deductive Reasoning
(a) Law of Detachment: If (\qquad is true AND \qquad is true),
then \qquad is true. Example:
(b) Law of Syllogism: If (\qquad is true AND \qquad is true), then \qquad is true. Example:
§2.6 Two Column Proofs
14. Properties of Equality
(a) Reflexive
(b) Symmetric
(c) Transitive
15. Algebra Properties of Equality
(a) Addition Property
(b) Subtraction Property
(c) Multiplication Property
(d) Division Property
(e) Substitution Property
(f) Distributive Property
§2.7 Proving Theorems About Angles
16. Equal Complements Theorem
17. Equal Supplements Theorem
18. Equal Supplementary Angles Theorem
19. Linear Pair Theorem
20. Vertical Angles Theorem*
21. Right Angles Theorem

Chapter 3 Parallel ($\|$) and Perpendicular (\perp) Lines
22. Angles Pairs formed by Transversals (p. \qquad -)
(a) Alt Int \angle 's
(b) Same-side Int \angle 's
(c) Corr \angle 's
(d) Alt Ext \angle 's
§3.2-3.4 Proving Lines Are Parallel
23. Parallel Postulate (p. \qquad -)
24. Perpendicular Postulate (p. \qquad)
25. Two Lines \perp to a Third Line (p. \qquad)
26. Iff Corresponding Angles \cong, then the lines are \| Postulate (p. \qquad)
27. Iff Alternate Interior Angles \cong, then the lines are \|Theorem (p. \qquad)
28. Iff Alternate Exterior Angles \cong, then the lines are \| Theorem (p. \qquad)
29. Iff Same-Side Interior Angles Are Supplementary, then the lines are || Theorem (p. \qquad)
30. \perp Transversal Theorem (p. \qquad)
31. Two Lines Parallel Lines (p. \qquad)
32. Transitive Property of Parallel Lines (p. \qquad)
§3.5 Constructions
33. (a) Constructing a Parallel Line
(b) Constructing a \perp Through a Point on a Line
(c) Constructing a \perp Through a Point NOT on a Line
§3.6-3.7 Coordinate Geometry
34. (a) Find slope
(b) Slope-Intercept Form of a line
(c) Point-slope Form of a Line
(d) Standard Form of a Line
(e) Slope of a \perp Line
(f) Vertical Line Equation
(g) Horizontal Line Equation

Chapter 4

35. Types of Triangles
(a) Acute
(b) Obtuse
(c) Equalangular/Equalateral
(d) Right
(e) Scalene
(f) Isosceles
36. Triangle Sum Theorem (p. \qquad)
37. Corollary: Exterior Angle of a \triangle Theorem (p. \qquad)
38. Corollary: Acute Angles of a Rt- \triangle
§4.2 Congruent Figures:
39. Third Angles Theorem
40. Corresponding Parts of \cong Figures are $\cong(\mathrm{CPCF}$ or $\mathrm{CP} \cong \triangle$ are \cong, etc.) (p. \qquad -)
§4.3-§4.6: Congruent $\triangle^{\prime} s$
41. SSS (Side-Side-Side) (p. \qquad -
42. SAS (Side-Angle-Side) (p. \qquad)
43. ASA (Angle-Side-Angle) (p. ___)
44. AAS (Angle-Angle-Side) (p. \qquad)
45. Isosceles Base Angels Theorem (p. \qquad -)
46. \perp Bisector of the Base of an Isosceles \triangle Theorem (p. \qquad)
47. HL (Hypotenuse-Leg) (p. \qquad)
