Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 1: Prisms
n your desk	Definition
	A prism is a solid with two congruent bases that are parallel, and lateral
12.1	edges are parallel.
12.2	
12.3	
12.4 12.5	lateral edges altitude base lateral face

PARALLELOGRAM 12.1 12.2 RIGHT RIGHT OBLIQUE TRIANGULAR PENTAGONAL HEXAGONAL	Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 1: Prisms
12.1 12.2 12.3 12.4 RIGHT RIGHT OBLIQUE HEXAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	on your desk	Some Types of Prisms
12.2 12.3 12.4 RIGHT RIGHT PENTAGONAL OBLIQUE HEXAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,		PARALLELOGRAM
12.2 12.3 12.4 12.5 RIGHT RIGHT PENTAGONAL HEXAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	12.1	
12.4 RIGHT TRIANGULAR RIGHT PENTAGONAL RIGHT PENTAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	12.2	BASES
TRIANGULAR PENTAGONAL HEXAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	12.3	
TRIANGULAR PENTAGONAL HEXAGONAL What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,		
What is the difference between right prism and oblique prism? Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	12.4	RIGHT RIGHT OBLIQUE
Theorem 12.1 The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,	12.5	TRIANGULAR PENTAGONAL HEXAGONAL
The lateral area of a right prism equals the perimeter, p, of a base times the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,		What is the difference between right prism and oblique prism?
the height, h, of the prism. (L.A.=ph) Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,		Theorem 12.1
Theorem 12.2 The volume of a right prism equals the area of a base, B, times the height,		The lateral area of a right prism equals the perimeter, p, of a base times
The volume of a right prism equals the area of a base, B, times the height,		the height, h, of the prism. (L.A.=ph)
		Theorem 12.2
		The volume of a right prism equals the area of a base, B, times the height,

Notes

Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 1: Prisms

12.1 12.2 12.3				6 3
12.5			Right Rectangular Prism	Right Triangular Prism
	1	р		
	2	В		
	3	L.A.		
	4	T.A.		
	5	V		

1	Ca	+0	
JN	10	uе	25

Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids

	Section 1: Prisms	
on your desk	Example 5	
	Given that the volume of a cube is 8 cm ³ , find	
<u>12.1</u>	(a) the length of each edge.	
12.2		
<u>12.3</u>		
	(b) total surface area. Show in two different way.	
<u>12.4</u>		
<u>12.5</u>		
	Example 6	
	The length of a rectangular prism is four times the width and the	
	height equal to the width. If the volume is 32m³, then find	
	dimension.	
		4

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 1: Prisms
on your desk	Example 7
	A drinking trough for horses is a right trapezoidal prism with dimensions
<u>12.1</u>	shown. If the water is filled 2/3 of the way up, about how will the water
<u>12.2</u>	weight? (Note: 1 m³ of water weight 1 metric ton).
<u>12.3</u>	150cm
	/120
12.4	/130cm
12.5	130cm 3m
	50cm
	5

Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 2: Pyramids Notes on your desk We'll be studying mostly regular PART OF PYRAMID pyramid in this section. apex Regular pyramids have following <u>12.1</u> <u>12.2</u> properties: slant height 12.3ateral • the base is a regular polygon edge all lateral edges are congruent 12.4 lateral all lateral faces are isosceles 12 face triangle the altitude meets the base at base its center

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 2: Pyramids
on your desk	Given regular pentagonal pyramid, name the following
	base:
12.1	
12.2	lateral edges:
12.3	E D
	lateral faces:
12.4	B G
<u>12.5</u>	altitude:
	slant height:
	apex:
	7

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 2: Pyramids
on your desk	Theorem 12.3
	The lateral area of a regular pyramid equals half the perimeter of the base
<u>12.1</u>	times the slant height. (L.A.=pl/2)
12.2	Can you prove the formula of lateral area?
12.3	
<u>12.4</u>	
12.5	
	Theorem 12.4
	The volume of a pyramid equals one third the area of the base times the
	height of the pyramid. (Volume=Bh/3)

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 2: Pyramids
on your desk	Example 1
	A regular square pyramid has base edge 6m and lateral edge 5m.
<u>12.1</u>	(a) length of a slant height=
12.2	(b) lateral area =
12.3	(c) base area =
	(d) total area =
12.4	(e) length of altitude =
<u>12.5</u>	(f) volume =
	Example 2
	A regular triangular pyramid has slant height 9cm and base perimeter 12cm.
	(a) lateral area =
	(b) base area=
	(c) total area=
	9

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 2: Pyramids
on your desk	Example 3
	The height of a regular triangular pyramid is 6cm, and the radius of the base
12.1	is 8cm. Find the base area and the volume of the pyramid.
12.2	
<u>12.3</u>	
12.4	
12.5	
	Example 4
	Find the volume of the regular pyramid below to the nearest tenth. The
	measure of each side of the base is 6.
	(→ 55°
	10

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 3: Cylinders and Cones
on your desk	Definition
	Cylinder is a prism with bases that are congruent circles on a parallel plane.
<u>12.1</u>	Cones is a pyramid with a circular base. All formulae shown in previous two
12.2	sections apply to both cylinder and cones.
12.3	COMPARE AND CONTRAST the new theorems from Thm12.1 & Thm12.3 !!!!
	Theorem 12.1
12.4	The lateral area of a right prism equals the perimeter, p, of a base times
12.5	the height, h, of the prism. (L.A.=ph)
	Theorem 12.5
	The lateral area of a cylinder equals the circumference of a base, 2πr,
	times the base times the height, h, of the cylinder. (L.A.= $2\pi rh$)
	Theorem 12.2
	The volume of a right prism equals the area of a base, B, times the height,
	h, of the prism. (V=Bh)
	Theorem 12.6
	The volume of a cylinder equals the area of a base, B, times the height, h,
	of the prism. $(V=Bh=\pi r^2h)$

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 3: Cylinders and Cones	
on your desk	NOTE	
	Cylinder = SPECIAL prism; Cone = SPECIAL pyramid	
<u>12.1</u>		
12.2	Theorem 12.3	
<u>12.3</u>	The lateral area of a regular pyramid equals half the perimeter of the base times the slant height. (L.A.= $pl/2$)	
12.4	Theorem 12.7	
12.5	The lateral area of a cone equals half the circumference of the base times the slant height. (L.A.=pl/2 or $2\pi rl/2=\pi rl$)	
	Theorem 12.4	
	The volume of a pyramid equals one third the area of the base times the height of the pyramid. (Volume= $Bh/3$)	
	Theorem 12.8	
	The volume of a cone equals one third the area of the base times the	
	height of the pyramid. (Volume= $Bh/3=\pi r^2h/3$)	

Notes	Ch Un Sect	apter 12 it 1: Impor tion 3: Cyl	: Areas and Volumes of So tant Solids inders and Cones	líds
on your desk				
			·	
12.1				13cm
12.2		70	cm	/
12.3			5cm	
				24cm
12.4				24011
<u>12.5</u>	Г		C.P. de .	Control
			Cylinder	Cone
	1	В		
	2	L.A.		
	3	T.A.		
	4	V		

Notes	Chapter 12: Areas and Volume Unit 1: Important Solids Section 3: Cylinders and Cones	es of Solids
on your desk	Example 5	Example 6
	A cone with radius 6cm and height	A right cone and a right cylinder
<u>12.1</u>	12cm is filled to capacity with	have equal base areas. The height of
12.2	liquid. Find the minimum height of	the cylinder is four times the height
12.3	a cylinder with radius 4cm that will	of the cone. Compare the volumes.
	hold the same amount of liquid.	
12.4		
12.5		
	Example 7	
	A pipe is 3m long and has inside radi	us 4cm and outside radius 5cm. Find
	the volume of metal. Round to the ne	earest tenth. Draw the diagram, first.
		14

Notes	Chapter 12: Areas and Volumes of Solids Unit 1: Important Solids Section 3: Cylinders and Cones
on your desk	Example 8
	A regular square pyramid is inscribed in a cone with radius 4cm and height
<u>12.1</u>	4cm.
<u>12.2</u>	(a) What is the volume of the pyramid?
12.3	
12.4	(b) Find the slant height of the cone and the pyramid.
<u>12.5</u>	
	\(\frac{1}{2} \)
	1

Notes	Chapte Unit 2: S Section 4	er 12: Are imilar Solid :: Spheres	as and Vo	lumes of Solids		
on your desk	Theorem	12.9				
	The surfa	ace area of	a sphere is	4πr²		
12.1						
12.2	Theorem					
12.3	The volu	me of a spl	here is $\frac{4}{3}\pi r^3$			
12.4					.,	1
<u>12.5</u>		d	r	Α	V	4
	1	12				
	2		7			1
	_		,			-
	3				$\frac{32000\pi}{2}$	
					3	-
	4			12π		
	5		r			
			·			_
	6		2r			

Notes	Chapter 12: Areas and Volumes of Solids Unit 2: Similar Solids Section 4: Spheres	
on your desk	Example 7	
	The volume of a sphere is 36π . Find the surface area.	
<u>12.1</u>		
<u>12.2</u>	Example 8	
<u>12.3</u>	a) Compare the areas of the spheres in 5 and 6.	
<u>12.4</u>	b) Compare the volumes of the spheres in 5 and 6.	
<u>12.5</u>		
	c) What can you generalize from this example?	
	Example 10	
	The number of square centimeters in the area of a sphere is twice the	
	number of cubic centimeter in the volume of a sphere. Find the radius of	
	the sphere.	
		17

Notes	Chapter 12: Areas and Volume Unit 2: Similar Solids Section 4: Spheres	
on your desk	Example 11	Example 12
	A scoop of ice cream with diameter	Four metal ball with a diameter of
2.1	8cm is placed on an ice-cream	4cm fit snugly inside a cylinder. If
2.2	cone with diameter 7cm and height	you melt it and pour it back into
2.3	10cm. If the ice creams melts, will	the cylinder, how high will the
	the ice cream overflow? Show why	molten metal be after it cools
2.4	or why not.	inside the cylinder?
2.5		
		-

Notes	Unit 2: Simila	: Areas and Vo or Solids oas and Volumes of	2	
on your desk		are solids that have's analogous to sin	ve the same shape, but no nilar polygons.	ot necessarily the
<u>12.1</u>		_		
12.2	_			
<u>12.3</u>				
12.4				
<u>12.5</u>				
	I	II	I	
	radius =2	radius =4	side of base=3	side of base=9
	height=6	height=12	height=4	height=12
	Find the ratio	s of volumes for ea	ach set of solids.	
				19

Chapter 12: Areas and Volumes of Solids Unit 2: Similar Solids Section 5: Areas and Volumes of Similar Solids Notes on your desk <u>12.1</u> <u>12.2</u> **12.3** П П side of base=3 **12.4** side of base=9 radius =2 radius =4 12.5 height=12 height=6 height=12 height=4 Cylinder I and II Pyramids I and II scale factor 1 base perimeter I 2 base perimeter II L.A. I 3 L.A. II Volume I 4 Volume II

Notes	Chapter 12: Areas and Volumes of Solids Unit 2: Similar Solids Section 5: Areas and Volumes of Similar Solids	
on your desk	Theorem 12.11	
	If the scale factor of two similar solids is a:b, then	
12.1	(1) the ratio of corresponding perimeters is a:b.	
12.2	(2) the ratio of the base areas, the lateral areas, and the total area is a ² :b ²	
<u>12.3</u>	(3) the ratio of the volume is a ³ :b ³ .	
12.4	Example 1	
12.5	(a) Are all spheres similar? (b) Are all right cylinders similar?	
	Example 2	
	Two cones have base radii 8 and 12, and heights 16 and 24, respectively.	
	Are the cones similar?	
	Example 3	
	Two similar square pyramids have base areas 4m2 and 36m2.	
	 Find the ratio of the height of the pyramids. 	
	· If the height of the larger pyramid is 27m, what is the height of the	
	smaller pyramid?	:

Notes	Chapter 12: Areas and Volumes of Solids Unit 2: Similar Solids Section 5: Areas and Volumes of Similar Solids					
	<u> </u>					
on your desk	Problem 1					
	Two regular pyramids have equilateral triangular bases with sides 4 and 6.					
<u>12.1</u>	Their heights are 6 and 9, respectively. Are the two pyramids similar?					
12.2						
12.3	Problem 2					
	Two similar cones have bases with area ratios of 4:9. Find the ratios of the					
12.4	following:					
12.5	(a) radii (b) heights (d) total areas (d) volumes					
	Problem 3					
	The volumes of two spheres have a ratio of 24:64. Find the area of the					
	larger sphere if the area of the smaller sphere is 18.					
	Problem 4					
	The radii of two similar cylinders are 2 and 5. Find the ratios of their					
	volumes and of their lateral areas.					
	2					

Notes	Chapter 12: Areas and Volumes of Solids Unit 2: Similar Solids Section 5: Areas and Volumes of Similar Solids
on your desk	Problem 5
	The volumes of two similar rectangular solids are 125cm ³ and 64cm ³ . Find
<u>12.1</u>	the ratio of their base perimeters.
12.2	
12.3	
12.4	
12.5	
	Problem 6
	(a) A diagonal of one cube is 2cm. Find its volume.
	(b) Using the ratios of similar solids, find the volume of a cube whose
	diagonal is 5cm.
	23