
 

Warm-Up 
Consider the alternating series defined below: 

 

A)  Use the alternating series test to show that this series converges when x = 3. 

  

B)  Show that this series converges for all x values where x is a real number. 

  

C)  Consider the function where  

      Determine if  has a relative minimum, relative maximum or neither at x = 0.   

      Give a reason for your answer.  

(−1)n x2n

(2n)!n=0

∞

∑

−1( )n 3( )2n

2n( )!n=0

∞

∑ = 1−
3( )2

2
+

3( )4

4!
−

3( )6

6!
+

3( )8

8!
−L= 1− 9

2
+ 81

24
− 729

720
+ 6561

40320
−L

an+1 ≤ an  lim
n→∞
an = lim

n→∞

32n

2n( )! = 0⇒
−1( )n 3( )2n

2n( )!n=0

∞

∑  converges

32n+2

2n+ 2( )! ≤
32n

2n( )!⇒
32n+2

32n ≤
2n+ 2( )!

2n( )! ⇒ 9 ≤ 2n+ 2( ) 2n+1( )⇒ 0 ≤ 4n2 + 6n− 7 ⇒ n ≥1

−1( )n x2n

2n( )!n=0

∞

∑ = 1− x
2

2
+ x

4

4!
− x

6

6!
+ x

8

8!
−L lim

n→∞
an = lim

n→∞

x2n

2n( )! = 0

an+1 ≤ an  when n > N  where  N  is an integer.

x2 n+1( )

2 n+1( )( )! ≤
x2n

2n( )!⇒
2n( )!

2n+ 2( )! ≤
x2n

x2n+2 ⇒
x2n+2

x2n ≤
2n+ 2( )!

2n( )! ⇒ x2 ≤ 2n+ 2( ) 2n+1( )

0 ≤ 2n+ 2( ) 2n+1( )− x2 ⇒ 4n2 + 6n+ 2− x2( ) ≥ 0 4n2 + 6n+ 2− x2( )  is an open up parabola so 

when  n >  the positive zero to the right then 4n2 + 6n+ 2− x2( ) ≥ 0

N =
−6+ 62 − 4 4( ) 2− x2( )

2 4( ) = −6+ 36− 32+16x2

2 4( ) = −6+ 4+16x2

2 4( ) = −3+ 4x2 +1
4

N  can be found for any value of  x.

f (x) ′f (x) = (−1)n x2n

(2n)!
= 1−

n=0

∞

∑ x2

2
+ x

4

4!
− x

6

6!
+L

f (x)

′f 0( ) = −1( )n x2n
2n( )!n=0

∞

∑ = 1−
0( )2
2

+
0( )4
4!

−
0( )6
6!

+L= 1⇒ Neither

Topic: 10.1 Defining Convergent and Divergent Infinite 
Series 

Date:  March 30, 2020 AP CALCULUS BC YouTube Live Virtual Lessons Mr. Bryan Passwater 
Mr. Anthony Record 

Topic: 10.5 & 10.9 

 

Harmonic Series and p-Series 

Determining Absolute or Conditional Convergence 

Date:  April 1, 2020 



Lesson Overview 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Guided Practice 
 
Let’s refresh back to the Alternating Series Test for a moment.  Each of the following series below can be 
easily shown to converge by meeting the conditions of the Alternating Series Test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

WHAT WE ARE GOING TO DO WHAT YOU SHOULD ALREADY KNOW 
• Introduce a very important and 

quite common series, the p-series. 
• Determine the conditions in which a 

p-series will converge or diverge. 
• Explain the difference between 

conditional convergence and 
absolute convergence. 

• Solid understanding of the concepts  
“converge” and “diverge” 

• Techniques for evaluating a limit 
• Alternating Series Test for Convergence 

 

WHAT YOU WILL BE ABLE TO DO 

Given the following series:  .  

 

sin 2n−1( )⋅π 2⎡⎣ ⎤⎦
nn=1

∞

∑

                                                                

 

 Question:  Does this series, conditionally converge,           
                      absolutely converge or diverge? 

 



Topic 10.5 in AP Calculus BC introduces a new series that is quite common, the p-series whose 
convergence/divergence is determined using the information in the box below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 1:  Determine if the following series converge or diverge using the p-series test.  Identify any 
value(s) for p. 
 

a.)   

 

 

 
 
 

b.)   

 

c.)   

 

 

d.)   

 

 

 
 

e.)   
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be determined by p − series test

CONVERGENCE OF A p-SERIES 
The p-series is defined by the following where p is a positive real number.  

 

1.  converges if  p > 1,   and 

2.  diverges if 0 < p ≤ 1.
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the previous lesson on the Alternating Series Test, we noticed that if a series is alternating, then it is 
“easier” for the series to converge.  When working with an alternating series, or any series that has both 
positive and negative terms, it is natural to wonder if the series converged BECAUSE it was alternating or if 
it would have converged regardless of the alternating component.  
 

Consider the alternating series from the beginning of this lesson:   

 
We have already determined that this series converges by the alternating series test.  Would this series still 
converge if it was not alternating? 
 

Well, we certainly know the answer to that question as  diverges by the p-series test where p = 1. 

 

What this is all saying is that  is conditionally convergent because  

                                                converges but =  diverges 

 
 
These two series above are important and have special names. 

 is the harmonic series (p = 1)              is the alternating harmonic series 

 
 
 
 
 

 
 
 
 
 
 

(−1)n+1

nn=1

∞

∑

1
nn=1

∞

∑

(−1)n+1

nn=1

∞

∑
(−1)n+1

nn=1

∞

∑ (−1)n+1

nn=1

∞

∑ 1
nn=1

∞

∑

1
nn=1

∞

∑ (−1)n+1

nn=1

∞

∑

THE HARMONIC SERIES 

The harmonic series is simply a special case of a p-series where p = 1.  

 

DEFINITION of ABSOLUTE and CONDITIONAL CONVERGENCE 

1.    is absolutely convergent if  converges. 

2.   is conditionally convergent if  converges but  diverges. 

 

Did you know the harmonic series 
has a close relationship between 
string instruments and the notes 
that can be played on them? 



 
 
Example 2:  The Kitchen Sink of Alternating Series 
                      Determine if the following series are absolutely,  
                      conditionally convergent or divergent. 
 

a.)   

 

 

b.)   

 

c.)   

 

 

d.)   
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e.)   

 

f.)   

 

g.)   

 

 

h.)   
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Check for Understanding 
 

 
Practice 1:  Alternating Series Roundup 
                     For each series below, k is a constant.  Use the information about the  
                     given series to answer the following questions.  
 
 
 
 
 
 

 

a.)  Find a value of k such that  is a conditionally convergent series and  is  

      absolutely convergent. 

       

 

b.)  Find the maximum value of k such that  is a conditionally convergent series and   

      is absolutely convergent. 
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c.)  If   is absolutely convergent, determine if is absolutely convergent, conditionally  

      convergent or divergent. 
 

 

 

d.)   If   diverges, which alternating series must be absolutely convergent? 
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Practice 2:  More Alternating Series 
                      Determine if the following series are absolutely, conditionally convergent or divergent. 
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c.)   
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Debrief and Summary 
 

ENDURING UNDERSTANDINGS KEY TAKEAWAYS 
Applying limits may allow us to 
determine the finite sum of infinitely 
many terms. 

- If  

-  is absolutely convergent if  converges.              - 

 is conditionally convergent if  converges,    

   but  diverges. 

COMMON ERRORS, MISCONCEPTIONS & PITFALLS 

 
 

 

  

1
np

converges if p > 1 and diverges if 0 < p≤ 1 
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∞
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∞
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∞

∑

an
n=1

∞

∑

 

• Be sure to simplify exponents when working with p - series. 
• Alternating series can converge in two different ways.  It is best to 

start by determining the behavior of the series of the absolute value 
of the nth-term expression and then applying the AST. 
 

 



AP Exam Practice 
Let	𝑎(𝑛) =

1
𝑛!"# 	where	𝑘	is	a	constant 

(a)	For	𝑘 =
1
2 , use	the	alternating	series	test	to	show	that	;

(−1)$𝑎(𝑛)
%

$&#

	converges.		Determine	if	 

       this	series	converges	conditionally	or	converges	absolutely.		Explain	your	reasoning.  

  

(b)	Let	𝑏(𝑛) = 𝑎I√𝑛K.		Find	all	integer	values	of	𝑘	such	that	;(−1)$𝑏(𝑛)
%

$&#

	converges	conditionally. 

        

(c)	Let	𝑐(𝑛) = 𝑎(𝑛'(!).		Show	that	there	is	no	real	value	of	𝑘	such	that	; 𝑐(𝑛)
%

$&#

	is	the	harmonic	series. 
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∞

∑  converges but 
1

n
1
2
k+1( )n=1

∞

∑  does not converge.

lim
n→∞

1

n
1
2
k+1( )

= 0⇒ lim
n→∞
n

1
2
k+1( )

→∞⇒ 1
2
k +1( ) > 0⇒ k > −1

1

n+1( )
1
2
k+1( )

≤ 1

n
1
2
k+1( )

⇒ b n+1( ) ≤ b n( )

1

n
1
2
k+1( )n=1

∞

∑ is a divergent  p − series with p = 1
2
k +1( ) ≤1⇒ k ≤1

−1< k ≤1⇒ k = 0,1

c n( )
n=1

∞

∑ = 1

n−2k( )k+1
n=1

∞

∑ = 1
n−2k k+1( )

n=1

∞

∑

Harmonic series ⇒−2k k +1( ) = 1

0 = 2k 2 + 2k +1⇒ k =
−2 ± 22 − 4 2( ) 1( )

2 2( ) = −2 ± −4
4

 which is not a real number


