AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: 10.7	Alternating Series Test for Convergence	Date: March 31, 2020

Warm-Up

Determine, if possible, if each of the given series diverges based on the *n*th term test for divergence

a)
$$\sum_{n=0}^{\infty} 5^n$$

$$b) \sum_{n=0}^{\infty} \frac{2n!}{1-3n!}$$

c)
$$\sum_{n=0}^{\infty} (3^{1-n} \cdot 2^{1+n})$$

Lesson Overview

WHAT WE ARE GOING TO DO	WHAT YOU SHOULD ALREADY KNOW		
 Solidify our understanding of partial sums and convergence vs. divergence of a series Understand and use the Alternating Series Test when applicable 	 The nth term test for divergence How to evaluate a limit at infinity 		
WHAT YOU WILL BE ABLE TO DO			
alternating series test?	of these series can be shown to converge using the III. $\sum_{n=0}^{\infty} \frac{\cos{(\pi n)}}{n!} \qquad IV. \sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{n+2}$		
Question: Which of these meet the conditions needed to apply the alternating series test?			

Guided Practice

Let's briefly review some of the important concepts and vocabulary needed for Unit 10...

Sequence a_n	Series $\sum_{n=0}^{\infty} a_n$		
Partial Sum: $S_n = a_1 + a_2 + a_3 + \dots + a_n$			
A series converges if:	A series diverges if:		
$\lim_{n\to\infty} S_n = L$	$\lim_{n\to\infty} S_n \neq L$		
n -th term test for divergence $ \text{If } \lim_{n \to \infty} a_n \neq 0 \text{, then } \sum_{n=1}^{\infty} a_n \text{ diverges} $			

Given a series, we are interested in knowing if the series converges or diverges. If a series converges, we are often interested in what the series converges to...although this is not always possible (especially in an entry level calculus course).

Example 1: Consider the following series below. Determine if the series converge or diverge.

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} + \dots$$

b)
$$\sum_{n=1}^{\infty} (-1)^n$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

Alternating Series

An alternating series is a series whose terms alternate in signs.

A few examples of alternating series include:

a)
$$\frac{7}{3} - \frac{1}{2} + 2 - \frac{1}{4} + \frac{5}{3} - \frac{1}{8} + \frac{4}{3} - \frac{1}{16} + \cdots$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{-2}{3}\right)^n$$

d)
$$\sum_{n=2}^{\infty} \frac{\cos{(\pi n)}}{n!}$$

Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{and} \quad \sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

converge if the following conditions are both met:

$$1. \lim_{n \to \infty} a_n = 0$$

2.
$$a_{n+1} \le a_n$$
 for all $n > N$ where N is an integer

Example 2: Determine the convergence or divergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$

Example 3: Determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 - 6n + 10}$

Example 4: Consider the series given below. For each, determine if the altnernating series test can be applied. If not, explain why not.

$$a) \sum_{n=0}^{\infty} \frac{\cos{(\pi n)}}{n!}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{5n-3}$$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \cdot n}{3n+1}$$

d)
$$\sum_{n=1}^{\infty} a_n \text{ where } a_n = \begin{cases} \frac{1}{n}, & \text{if } n \text{ is odd} \\ -\frac{1}{n^2}, & \text{if } n \text{ is even} \end{cases}$$

Check for Understanding

Practice 1: Show that the following series converges using the alternating series test

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} = 1 - \frac{1}{2} + \frac{1}{24} - \frac{1}{720} + \cdots$$

Practice 2: There are six series listed below. For each of the six series, determine which of the two categories below they fall into.

Alternating Series Test
does not apply

Converges by the Altnerating Series Test

A.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$$
B.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{2n-1}{7n+3}$$
C.
$$\sum_{n=0}^{\infty} \frac{(-1)^{2n}}{4^n}$$
D.
$$\sum_{n=1}^{\infty} \cos(\pi n) \cdot n^{-1}$$
E.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{n^2+2}$$
F.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt[3]{n}}{n}$$

Practice 3: Each statement below if false. Correct each statement to create a true statement.

For Statements 1 - 3: Let $a_n > 0$

Statement 1: If $a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n$ converges, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges

Statement 2: If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges

Statement 3: If $\sum_{n=1}^{\infty} (-1)^n a_n$ diverges, then $\lim_{n\to\infty} a_n = 0$

Statement 4: Consider the series $\sum_{n=1}^{\infty} b_n$. If $\sum_{n=1}^{\infty} b_n$ diverges, then $\lim_{n\to\infty} b_n \neq 0$

Debrief and Summary

ENDURING UNDERSTANDING	KEY TAKEAWAY	
Applying limits may allow us to determine the finite sum of infinitely many terms.	For $a_n > 0$, the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges if 1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all $n > N$ where N is an integer	
COMMON ERRORS, MISCONCEPTIONS & PITFALLS		
For any series	and series test is for CONVERGENCE. The series diverges series does not necessarily imply $\lim_{n \to \infty} S_n \to \infty$	

AP Exam Practice

Consider the altnerating series defined below:

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

A) Use the alternating series test to show that this series converges when x = 3.

B) Show that this series converges for all x values where x is a real number.

C) Consider the function f(x) where $f'(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

Determine if f(x) has a relative minimum, relative maximum or neither at x=0. Give a reason for your answer.