
Calculus Section 9.1 Sequences

-List the terms of a sequence and write a sequence. -Determine whether a sequence converges or diverges

Homework: page 596 #'s 1 – 7 odd,	
18, 19, 29 – 49 odd	

Mathematically, a **sequence** is defined as a function whose domain is the set of positive integers. Each integer is mapped to a term of the sequence.

The numbers a_1 , a_2 , a_3 , ..., a_n , ... are the **terms** of the sequence. The number a_n is called the **nth term** of the sequence, and the entire sequence is notated using curly-brackets: $\{a_n\}$.

Example) List the terms of each sequence:

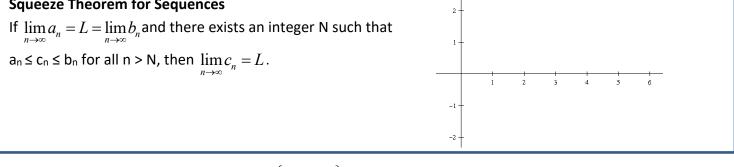
1)
$$\{a_n\} = \{3 + (-1)^n\}$$

2) $\{a_n\} = \{\frac{1}{2^n}\}$
3) $\{d_n\}$ is $d_{n+1} = d_n - 5$, $d_1 = 25$

A primary focus of this chapter concerns sequences whose terms approach limiting values. These sequences are said to **converge**. For instance, the sequence $\left\{\frac{1}{2^n}\right\}$ converges to 0.

Evaluate $\lim_{n \to \infty} \{a_n\}$ to determine whether (and to what) a sequence converges.

Example) Determine whether each sequence converges


1)
$$\{a_n\} = \{3 + (-1)^n\}$$

2) $\{b_n\} = \left\{\frac{n}{1-2n}\right\}$
3) $\{c_n\} = \frac{n^2}{2^n - 1}$

4)
$$\{a_n\} = \left\{\frac{\ln(n)}{n}\right\}$$
 5) $\{b_n\} = \frac{(n+1)!}{n!}$ 6) $\{c_n\} = \frac{(n+1)!}{(n+3)!}$

Properties of Limits of Sequences

Let
$$\lim_{n \to \infty} a_n = L$$
 and $\lim_{n \to \infty} b_n = K$.
1) $\lim_{n \to \infty} (a_n \pm b_n) = L \pm K$
2) $\lim_{n \to \infty} (ca_n) = cL$, c is any real number
3) $\lim_{n \to \infty} (a_n b_n) = LK$
4) $\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{L}{K}$, $b_n \neq 0$ and $K \neq 0$

Squeeze Theorem for Sequences

Example) Show that the sequence $\{c_n\} = \left\{(-1)^n \frac{1}{n!}\right\}$ converges, and find its limit.

Find the nth Term of a Sequence

Find a sequence $\{a_n\}$ whose first five terms are $\frac{-2}{1}, \frac{8}{2}, \frac{-26}{6}, \frac{80}{24}, \frac{-242}{120}$... then determine the value of a_6 and whether the sequence converges or diverges.