AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: Unit 10*	Convergence and Taylor Polynomials Free Response Question Review	Date: April 13, 2020

* The Topics in this lesson will only be those that will be directly tested on the 2020 AP Calculus BC Exam

	* The Topics in this lesson will only be those that will be directly tested on the 2020 AP Calculus BC Exam						
Topic Name	Topic #	Quick Synopsis					
Working with Geometric Series	10.2	CONVERGENCE OF A GEOMETRIC SERIES 1. If $ r < 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ converges 2. If $ r \ge 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ diverges. SUM OF AN INFINITE GEOMETRIC SERIES If $ r < 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ converges, and its sum is $S = \frac{a}{1-r},$ where a is the first term of the geometric series and r is the common ratio.					
Harmonic and p-Series	10.5	CONVERGENCE OF A <i>p</i> -SERIES The <i>p</i> -series is defined by the following where <i>p</i> is a positive real number. $\sum_{n=1}^{\infty} \frac{1}{n^{p}} = \frac{1}{1^{p}} + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \dots + \frac{1}{n^{p}} + \dots$ 1. converges if $p > 1$, and 2. diverges if $0 .$					
Alternating Series Test for Convergence	10.7	ALTERNATING SERIES TEST Let $a_n > 0$. The alternating series $\sum_{n=1}^{\infty} (-1)^n a_n \text{and} \sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converge if the following conditions are both met: 1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all $n > N$ where N is an integer					
Ratio Test for Convergence	10.8	THE RATIO TEST Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero terms. 1. Let $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right = L$, a number. • If $L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. • If $L = 1$, then the ratio test provides no conclusive information about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$. • If $L > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges. 2. Let $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right \Rightarrow \infty$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.					
Finding Taylor Polynomial Approximations of Functions	10.11	DEFINITIONS OF <i>n</i> TH TAYLOR POLYNOMIAL AND <i>n</i> TH MACLAURIN POLYNOMIAL If <i>f</i> has n derivatives at <i>c</i> , then the polynomial $P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} + \dots + \frac{f^{(n)}(c)(x - c)^n}{n!}$ is called the <i>n</i> th Taylor polynomial for <i>f</i> at <i>c</i> . If $c = 0$: $P_n(x) = f(0) + f'(0)(x) + \frac{f''(0)(x)^2}{2!} + \dots + \frac{f^{(n)}(0)(x)^n}{n!}$ is called the <i>n</i> th Maclaurin polynomial for <i>f</i> .					

2020 FRQ Practice Problem BC1

BC1 Let
$$a_n = \frac{(-1)^n}{n^{p-2}}$$
 and $b_n = \frac{-2}{n^{6-p}}$

(a) Let p = 2.5. Show that both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge.

$$p = 2.5 \Rightarrow \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/2}}$$

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{-2}{n^{7/2}}$$

Converges by Alternating Series Test,

which is a convergent *p*-Series $p = \frac{7}{2} > 1$

1.
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \to \frac{1}{\infty} \to 0$$

2.
$$\frac{1}{\sqrt{n+1}} \le \frac{1}{\sqrt{n}}$$
 because \sqrt{n} is increasing

(b) Find all integer values of p such that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{p-2}}$$
 will converge if $p-2>0 \Rightarrow p>2$

$$\sum_{n=1}^{\infty} \frac{-2}{n^{6-p}}$$
 will converge if $6-p > 1 \Longrightarrow p < 5$

$$\therefore \sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n \text{ both converge when } p = 3 \text{ or } 4$$

(c) Let p = 4. Let f(x) be a function with derivatives of all orders at x = 2 with f(2) = -3 and where

 $f^{(n)}(2) = n! \cdot a_n$ for $n \ge 1$. Find $P_3(x)$, the third degree Taylor polynomial for f(x) centered at x = 2.

$$f'(2) = -3$$

$$f''(2) = 1! \cdot a_1 = \frac{(-1)^1}{1^{(4-2)}} = -1$$

$$f'''(2) = 2! \cdot a_2 = 2 \cdot \frac{(-1)^2}{2^{(4-2)}} = \frac{1}{2}$$

$$f''''(2) = 3! \cdot a_3 = 6 \cdot \frac{(-1)^3}{3^{(4-2)}} = -\frac{6}{9} = -\frac{2}{3}$$

$$P_3(x) = f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2$$

$$P_3(x) = -3 - 1(x - 1) + \frac{1}{2 \cdot 2!}(x - 2)^2 - \frac{2}{3 \cdot 3!}(x - 2)^3$$

$$P_3(x) = -3 - (x - 1) + \frac{1}{4}(x - 2)^2 - \frac{1}{9}(x - 2)^3$$

(d) Using $P_3(x)$ that you found in part (c), find $P_3'(x)$. When x = 3, the series $\sum_{n=1}^{\infty} c_n$ is a *p*-series whose first three terms correspond to the three terms of $P_3'(x)$. Determine whether $\sum_{n=1}^{\infty} c_n$ converges or diverges when x = 3.

$$P_3(x) = -3 - (x-1) + \frac{1}{4}(x-2)^2 - \frac{1}{9}(x-2)^3$$

$$P_3'(x) = -1 + \frac{1}{2}(x-2) - \frac{1}{3}(x-2)^2$$

$$\sum_{n=1}^{\infty} c_n = -1 + \frac{1}{2}(x-2) - \frac{1}{3}(x-2)^2 + \cdots$$

At
$$x = 3$$
.

$$\sum_{n=1}^{\infty} c_n = -1 + \frac{1}{2}(3-2) - \frac{1}{3}(3-2)^2 + \dots = -1 + \frac{1}{2} - \frac{1}{3} + \dots$$

The resulting series is the alternating harmonic series which converges.

2020 FRQ Practice Problem BC2

- **BC2** Consider the series $\sum_{n=0}^{\infty} a_n$ where $a_n = \frac{5(x+3)^n}{(-6)^n}$.
- (a) Determine if $\sum_{n=0}^{\infty} a_n$ converges or diverges when x = 1.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{5(x+3)^n}{(-6)^n}$$

At
$$x = 1$$
, $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \frac{5(1+3)^n}{(-6)^n} = \sum_{n=0}^{\infty} \frac{5(4)^n}{(-6)^n} = \sum_{n=0}^{\infty} 5\left(-\frac{2}{3}\right)^n$

This is a geometric series where $r = -\frac{2}{3}$.

$$|r| = \frac{2}{3} < 1 \Rightarrow$$
 the series converges.

(b) Let $\sum_{n=0}^{\infty} a_n = L$ where L is a real number. Show that there is a value of x such that L = 15.

$$\sum_{n=0}^{\infty} a_n = \frac{5}{1 - \left(\frac{x+3}{-6}\right)} = \frac{5}{1 + \frac{x+3}{6}} = \frac{5}{\frac{x+9}{6}} = \frac{30}{x+9} = 15$$
Where $x = -7$, $\sum_{n=0}^{\infty} \frac{5(-4)^n}{(-6)^n} = \sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^n$
which is a convergent geometric series

Where
$$x = -7$$
, $\sum_{n=0}^{\infty} \frac{5(-4)^n}{(-6)^n} = \sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^n$

which is a convergent geometric series.

So,
$$15(x+9) = 30 \rightarrow x+9=2 \rightarrow x=-7$$

(c) Let $d_n = \frac{a_n}{n+1}$. Find the interval of convergence for $\sum_{n=0}^{\infty} d_n$.

$$\sum_{n=0}^{\infty} d_n = \sum_{n=0}^{\infty} \frac{a_n}{n+1} = \sum_{n=0}^{\infty} \frac{5(x+3)^n}{(-6)^n (n+1)}$$

Using the ratio test, we obtain

$$\lim_{n \to \infty} \left| \frac{d_{n+1}}{d_n} \right| = \lim_{n \to \infty} \left| \frac{5(x+3)^{n+1}}{(-6)^{n+1}(n+2)} \cdot \frac{(-6)^n (n+1)}{5(x+3)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(x+3)(n+1)}{(-6)^1 (n+2)} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n+2} \right) \cdot \lim_{n \to \infty} \left| \frac{(x+3)}{6} \right| = 1 \cdot \left| \frac{x+3}{6} \right|$$

To converge, $\left| \frac{x+3}{6} \right| < 1$.

$$\left| \frac{x+3}{6} \right| < 1 \to \left| x+3 \right| < 6 \to -6 < x+3 < 6 \to -9 < x < 3$$

This series converges on (-9,3]

Check the endpoints.

$$x = -9 \Rightarrow \sum_{n=0}^{\infty} \frac{5(-9+3)^n}{(-6)^n (n+1)}$$

$$= \sum_{n=0}^{\infty} \frac{5}{(n+1)}$$
 which is a divergent

harmonic series

$$x = 3$$

$$\sum_{n=0}^{\infty} \frac{5(3+3)^n}{(-6)^n (n+1)}$$

$$=\sum_{n=0}^{\infty} \frac{5(6)^n}{(-6)^n (n+1)}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{(n+1)}$$
 which converges

by the AST

(d) Let f(x) be a function that is twice differentiable at all x values. If the first three terms of $\sum_{n=0}^{\infty} d_n$ are the second degree Taylor polynomial for f(x) centered at x = -3, find f''(-3).

$$\sum_{n=0}^{\infty} d_n = \frac{5(x+3)^0}{(-6)^0(0+1)} + \frac{5(x+3)^1}{(-6)^1(1+1)} + \frac{5(x+3)^2}{(-6)^2(2+1)} + \cdots$$

$$= 5 - \frac{5}{12}(x+3) + \frac{5}{108}(x+3)^2 + \cdots$$

$$\frac{f''(-3)}{2!} = \frac{5}{108} \Rightarrow f''(-3) = \frac{10}{108} = \frac{5}{54}$$

2020 FRQ Practice Problem BC3

x	f(x)	f'(x)	f''(x)	$f^{\prime\prime\prime}(x)$
1	-2	0	3	4
4	$-\frac{9}{4}$	$\frac{3}{2}$	$-\frac{9}{4}$	$\frac{9}{2}$

BC3 The functions f and g are differentiable for all orders at all x values. Selected values for f and several of its derivatives are given in the table above. The function g is defined by:

$$g(x) = 3x + \int_{4}^{4x} f(t) dt$$

(a) Find $P_3(x)$, the third degree Taylor polynomial for f(x) centered at x = 1.

$$P_3(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$

$$P_3(x) = -2 + (0)(x-1) + \frac{3}{2!}(x-1)^2 + \frac{4}{3!}(x-1)^3 = -2 + \frac{3}{2}(x-1)^2 + \frac{2}{3}(x-1)^3$$

(b) Find $T_3(x)$, the third degree Taylor polynomial for g(x) centered at x = 1.

$$T_{3}(x) = g(1) + g'(1)(x - 1) + \frac{g''(1)}{2!}(x - 1)^{2} + \frac{g'''(1)}{3!}(x - 1)^{3}$$

$$g'(x) = 3 + 4 \cdot f(4x)$$

$$g'(1) = 3 + 4 \cdot f(4) = 3 + 4\left(-\frac{9}{4}\right) = -6$$

$$= 3 - 6(x - 1) + 12(x - 1)^{2} - 24(x - 1)^{3}$$

$$g''(x) = 16 \cdot f'(4x)$$

$$g'''(x) = 16 \cdot f'(4x)$$

$$g'''(x) = 64 \cdot f''(4x)$$

$$g''''(x) = 64 \cdot f'''(4x)$$

$$g''''(x) = 64 \cdot f'''(4x)$$

(c) Let $\sum_{n=0}^{\infty} a_n$ be a geometric series whose first four terms are the four terms of $T_3(x)$ found in part (b).

Find $\sum_{n=0}^{\infty} a_n$ where $x = \frac{5}{4}$ or show that the series diverges.

$$T_3(x) = 3 - 6(x - 1) + 12(x - 1)^2 - 24(x - 1)^3$$
$$T_3\left(\frac{5}{4}\right) = 3 - 6\left(\frac{5}{4} - 1\right) + 12\left(\frac{5}{4} - 1\right)^2 - 24\left(\frac{5}{4} - 1\right)^3$$

$$\sum_{n=0}^{\infty} a_n = 3 - 6\left(\frac{1}{4}\right) + 12\left(\frac{1}{4}\right)^2 - 24\left(\frac{1}{4}\right)^3 + \cdots$$

$$=3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+\cdots$$

- (d) A portion of the function $h\left(\frac{x}{2}\right)$ is above. Explain why $h\left(\frac{x}{2}\right)$ could not be the graph of f(x).
 - $f(1) = h\left(\frac{1}{2}\right)$ which we know nothing about

f(4) = h(2) which is shown on the graph

$$f(4) = -\frac{9}{4} < 0$$
 $h(2) < 0$

$$f'(4) = \frac{3}{2} > 0$$
 $h'(2) > 0$ because h is increasing

$$f''(4) = -\frac{9}{4} < 0$$
 $h''(2) > 0$ because h is concave up

Based on the concavity, the graph of $h\left(\frac{x}{2}\right)$ could not be the graph of f(x)

2020 FRQ Practice Problem BC4

BC4 A function g has derivatives of all orders for all values of x. A portion of the graph of g is shown above with the line tangent to the graph of f at x = 2.

Let h be the function defined by $h(x) = x - 2 - \int_{2}^{2x} g(t) dt$.

(a) Find the second degree Taylor polynomial $T_2(x)$, for h(x) centered at x = 1.

$$h(1) = ((1)-2) - \int_{2}^{2(1)} g(t) dt = -1 - \int_{2}^{2} g(t) dt = -1$$

$$h'(x) = 1 - (g(2x)(2)) = 1 - 2g(2x)$$

$$h'(1) = 1 - 2g(2) = 1 - 2(1) = -1$$

$$h''(x) = -2g'(2x)(2) = -4g'(2x) \Rightarrow$$

$$h''(1) = -4g'(2) = -4(3) = -12$$

$$T_{2}(x) = h(1) + h'(1)(x-1) + \frac{h''(1)}{2!}(x-1)^{2}$$

$$T_{2}(x) = -1 + (-1)(x-1) + \frac{(-12)}{2!}(x-1)^{2}$$

$$= -1 - (x-1) - 6(x-1)^{2}$$

(b) Explain why $P_2(x) = 1 + 3(x - 2) - \frac{5(x - 2)^2}{2!}$ could not be the second degree Taylor polynomial for g(x) centered at x = 2.

$$g(2)=1$$
 $g'(2)=3$

$$g(x)$$
 is concave up at $x = 2 \Rightarrow g''(2) > 0$

$$P_2(x)$$
 2nd degree term $=-\frac{5(x-2)^2}{2!} \Rightarrow g''(2) = -5$

so $P_2(x)$ can not be the second degree Taylor polynomial.

(c) Consider the geometric series $\sum_{n=0}^{\infty} \frac{a_n}{(2n)!}$ where the first three terms of a_n correspond to the three terms for

$$T_{2}(x). \text{ Find } \sum_{n=0}^{\infty} \frac{a_{n}}{(2n)!} \text{ when } x = 0.$$

$$T_{2}(x) = -1 - (x-1) - 6(x-1)^{2} = a_{n}$$

$$\sum_{n=0}^{\infty} \frac{a_{n}}{(2n)!} = \frac{-1}{0!} - \frac{1}{2!}(x-1) - \frac{6}{4!}(x-1)^{2} + \dots = -1 - \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^{2} + \dots$$

$$x = 0 \Rightarrow \sum_{n=0}^{\infty} \frac{a_{n}}{(2n)!} = -1 - \frac{1}{2}(-1) - \frac{1}{4}(-1)^{2} + \dots = -1 + \frac{1}{2} - \frac{1}{4} + \dots$$

$$x = 0 \Rightarrow \sum_{n=0}^{\infty} \frac{a_{n}}{(2n)!} = \frac{-1}{1 - \left(-\frac{1}{2}\right)} = \frac{-2}{2+1} = -\frac{2}{3}$$