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2020 FRQ Practice Problem BC1 
 
BC1     Let   

 (a)  Let .  Show that both converge.  

        

(b) Find all integer values of p such that  both converge. 

        

(c)  Let p = 4.  Let f (x) be a function with derivatives of all orders at x = 2 with  and where 

       Find , the third degree Taylor polynomial for f (x) centered at x = 2. 
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(d)  Using that you found in part (c), find .  When x = 3, the series is a p-series whose first  

       three terms correspond to the three terms of .  Determine whether converges or diverges when  

       x = 3. 
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BC2  Consider the series . 

(a)  Determine if  converges or diverges when x = 1. 

        

(b)  Let  where L is a real number.  Show that there is a value of x such that L = 15.  
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(c)  Let   Find the interval of convergence for . 

        

      

 

(d)  Let f (x) be a function that is twice differentiable at all x values.  If the first three terms of are the      

       second degree Taylor polynomial for f (x) centered at , find   
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BC3 The functions f and g are differentiable for all orders at all x values.  Selected values for f and several of its    
         derivatives are given in the table above.  The function g is defined by: 

 

(a)  Find , the third degree Taylor polynomial for f (x) centered at x = 1. 

  

 (b)  Find , the third degree Taylor polynomial for g (x) centered at x = 1. 
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(c)  Let be a geometric series whose first four terms are the four terms of found in part (b). 

       Find where  or show that the series diverges. 

  

 

 

 

 

 

 (d)  A portion of the function  is above.  Explain why  could not be the graph of f (x). 
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BC4 A function g has derivatives of all orders for all values of x.  A portion of the graph of g is shown above  
         with the line tangent to the graph of f at x = 2. 
 

Let h be the function defined by   

 
  
(a)  Find the second degree Taylor polynomial , for  centered at x = 1.  
 

   

(b)  Explain why  could not be the second degree Taylor polynomial for g(x)  

       centered at x = 2. 
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(c)  Consider the geometric series  where the first three terms of  correspond to the three terms for           

      .  Find   when x = 0. 
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