AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: Unit 10*	Convergence and Taylor Polynomials Free Response Question Review	Date: April 13, 2020

* The Topics in this lesson will only be those that will be directly tested on the 2020 AP Calculus BC Exam

2020 FRQ Practice Problem BC1

BC1 Let $a_{n}=\frac{(-1)^{n}}{n^{p-2}}$ and $b_{n}=\frac{-2}{n^{6-p}}$
(a) Let $p=2.5$. Show that both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge.

$$
p=2.5 \Rightarrow \sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1 / 2}}
$$

$$
\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{-2}{n^{7 / 2}}
$$

Converges by Alternating Series Test,

1. $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \rightarrow \frac{1}{\infty} \rightarrow 0$
2. $\frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}}$ because \sqrt{n} is increasing
(b) Find all integer values of p such that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p-2}}$ will converge if $p-2>0 \Rightarrow p>2$
$\sum_{n=1}^{\infty} \frac{-2}{n^{6-p}}$ will converge if $6-p>1 \Rightarrow p<5$
$\therefore \sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge when $p=3$ or 4
(c) Let $p=4$. Let $f(x)$ be a function with derivatives of all orders at $x=2$ with $f(2)=-3$ and where $f^{(n)}(2)=n!\cdot a_{n}$ for $n \geq 1$. Find $P_{3}(x)$, the third degree Taylor polynomial for $f(x)$ centered at $x=2$.

$$
\begin{aligned}
& f(2)=-3 \\
& f^{\prime}(2)=1!\cdot a_{1}=\frac{(-1)^{1}}{1^{(4-2)}}=-1 \\
& f^{\prime \prime}(2)=2!\cdot a_{2}=2 \cdot \frac{(-1)^{2}}{2^{(4-2)}}=\frac{1}{2} \\
& f^{\prime \prime \prime}(2)=3!\cdot a_{3}=6 \cdot \frac{(-1)^{3}}{3^{(4-2)}}=-\frac{6}{9}=-\frac{2}{3}
\end{aligned}
$$

(d) Using $P_{3}(x)$ that you found in part (c), find $P_{3}^{\prime}(x)$. When $x=3$, the series $\sum_{n=1}^{\infty} c_{n}$ is a p-series whose first three terms correspond to the three terms of $P_{3}^{\prime}(x)$. Determine whether $\sum_{n=1}^{\infty} c_{n}$ converges or diverges when $x=3$.
$P_{3}(x)=-3-(x-1)+\frac{1}{4}(x-2)^{2}-\frac{1}{9}(x-2)^{3}$
$P_{3}^{\prime}(x)=-1+\frac{1}{2}(x-2)-\frac{1}{3}(x-2)^{2}$
$\sum_{n=1}^{\infty} c_{n}=-1+\frac{1}{2}(x-2)-\frac{1}{3}(x-2)^{2}+\cdots$
At $x=3$,
$\sum_{n=1}^{\infty} c_{n}=-1+\frac{1}{2}(3-2)-\frac{1}{3}(3-2)^{2}+\cdots=-1+\frac{1}{2}-\frac{1}{3}+\cdots$
The resulting series is the alternating harmonic series which converges.

2020 FRQ Practice Problem BC2

BC2 Consider the series $\sum_{n=0}^{\infty} a_{n}$ where $a_{n}=\frac{5(x+3)^{n}}{(-6)^{n}}$.
(a) Determine if $\sum_{n=0}^{\infty} a_{n}$ converges or diverges when $x=1$.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{5(x+3)^{n}}{(-6)^{n}} \\
& \text { At } x=1, \sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{5(1+3)^{n}}{(-6)^{n}}=\sum_{n=0}^{\infty} \frac{5(4)^{n}}{(-6)^{n}}=\sum_{n=0}^{\infty} 5\left(-\frac{2}{3}\right)^{n}
\end{aligned}
$$

This is a geometric series where $r=-\frac{2}{3}$.
$|r|=\frac{2}{3}<1 \Rightarrow$ the series converges.
(b) Let $\sum_{n=0}^{\infty} a_{n}=L$ where L is a real number. Show that there is a value of x such that $L=15$.

$$
\sum_{n=0}^{\infty} a_{n}=\frac{5}{1-\left(\frac{x+3}{-6}\right)}=\frac{5}{1+\frac{x+3}{6}}=\frac{5}{\frac{x+9}{6}}=\frac{30}{x+9}=15
$$

Where $x=-7, \sum_{n=0}^{\infty} \frac{5(-4)^{n}}{(-6)^{n}}=\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^{n}$
which is a convergent geometric series.
So, $15(x+9)=30 \rightarrow x+9=2 \rightarrow x=-7$
(c) Let $d_{n}=\frac{a_{n}}{n+1}$. Find the interval of convergence for $\sum_{n=0}^{\infty} d_{n}$.
$\sum_{n=0}^{\infty} d_{n}=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}=\sum_{n=0}^{\infty} \frac{5(x+3)^{n}}{(-6)^{n}(n+1)}$
Check the endpoints.
Using the ratio test, we obtain
$\lim _{n \rightarrow \infty}\left|\frac{d_{n+1}}{d_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{5(x+3)^{n+1}}{(-6)^{n+1}(n+2)} \cdot \frac{(-6)^{n}(n+1)}{5(x+3)^{n}}\right|$
$=\lim _{n \rightarrow \infty}\left|\frac{(x+3)(n+1)}{(-6)^{1}(n+2)}\right|=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n+2}\right) \cdot \lim _{n \rightarrow \infty}\left|\frac{(x+3)}{6}\right|=1 \cdot\left|\frac{x+3}{6}\right|$
$x=-9 \Rightarrow \sum_{n=0}^{\infty} \frac{5(-9+3)^{n}}{(-6)^{n}(n+1)}$
$=\sum_{n=0}^{\infty} \frac{5}{(n+1)}$ which is a divergent harmonic series

$$
x=3
$$

To converge, $\left|\frac{x+3}{6}\right|<1$.
$\left|\frac{x+3}{6}\right|<1 \rightarrow|x+3|<6 \rightarrow-6<x+3<6 \rightarrow-9<x<3$
This series converges on $(-9,3]$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{5(3+3)^{n}}{(-6)^{n}(n+1)} \\
& =\sum_{n=0}^{\infty} \frac{5(6)^{n}}{(-6)^{n}(n+1)} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 5}{(n+1)} \text { which converges }
\end{aligned}
$$

by the AST.
(d) Let $f(x)$ be a function that is twice differentiable at all x values. If the first three terms of $\sum_{n=0}^{\infty} d_{n}$ are the second degree Taylor polynomial for $f(x)$ centered at $x=-3$, find $f^{\prime \prime}(-3)$.

$$
\begin{aligned}
& \begin{aligned}
\sum_{n=0}^{\infty} d_{n} & =\frac{5(x+3)^{0}}{(-6)^{0}(0+1)}+\frac{5(x+3)^{1}}{(-6)^{1}(1+1)}+\frac{5(x+3)^{2}}{(-6)^{2}(2+1)}+\cdots \\
& =5-\frac{5}{12}(x+3)+\frac{5}{108}(x+3)^{2}+\cdots \\
\frac{f^{\prime \prime}(-3)}{2!} & =\frac{5}{108} \Rightarrow f^{\prime \prime}(-3)=\frac{10}{108}=\frac{5}{54}
\end{aligned} .
\end{aligned}
$$

2020 FRQ Practice Problem BC3

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$
1	-2	0	3	4
4	$-\frac{9}{4}$	$\frac{3}{2}$	$-\frac{9}{4}$	$\frac{9}{2}$

BC3 The functions f and g are differentiable for all orders at all x values. Selected values for f and several of its derivatives are given in the table above. The function g is defined by:

$$
g(x)=3 x+\int_{4}^{4 x} f(t) d t
$$

(a) Find $P_{3}(x)$, the third degree Taylor polynomial for $f(x)$ centered at $x=1$.

$$
\begin{aligned}
& P_{3}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3} \\
& P_{3}(x)=-2+(0)(x-1)+\frac{3}{2!}(x-1)^{2}+\frac{4}{3!}(x-1)^{3}=-2+\frac{3}{2}(x-1)^{2}+\frac{2}{3}(x-1)^{3}
\end{aligned}
$$

(b) Find $T_{3}(x)$, the third degree Taylor polynomial for $g(x)$ centered at $x=1$.

$$
\begin{array}{ll}
T_{3}(x)=g(1)+g^{\prime}(1)(x-1)+\frac{g^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{g^{\prime \prime \prime}(1)}{3!}(x-1)^{3} & g^{\prime}(x)=3+4 \cdot f(4 x) \\
T_{3}(x)=3-6(x-1)+\frac{24}{2!}(x-1)^{2}-\frac{144}{3!}(x-1)^{3} & g^{\prime}(1)=3+4 \cdot f(4)=3+4\left(-\frac{9}{4}\right)=-6 \\
=3-6(x-1)+12(x-1)^{2}-24(x-1)^{3} & g^{\prime \prime}(x)=16 \cdot f^{\prime}(4 x) \\
& g^{\prime \prime}(1)=16 \cdot f^{\prime}(4)=16\left(\frac{3}{2}\right)=24 \\
& g^{\prime \prime \prime}(x)=64 \cdot f^{\prime \prime}(4 x) \\
& g^{\prime \prime \prime}(1)=64 \cdot f^{\prime \prime}(4)=64\left(-\frac{9}{4}\right)=-144
\end{array}
$$

(c) Let $\sum_{n=0}^{\infty} a_{n}$ be a geometric series whose first four terms are the four terms of $T_{3}(x)$ found in part (b).

Find $\sum_{n=0}^{\infty} a_{n}$ where $x=\frac{5}{4}$ or show that the series diverges.

$$
\begin{aligned}
T_{3}(x) & =3-6(x-1)+12(x-1)^{2}-24(x-1)^{3} \\
T_{3}\left(\frac{5}{4}\right) & =3-6\left(\frac{5}{4}-1\right)+12\left(\frac{5}{4}-1\right)^{2}-24\left(\frac{5}{4}-1\right)^{3} \\
\sum_{n=0}^{\infty} a_{n} & =3-6\left(\frac{1}{4}\right)+12\left(\frac{1}{4}\right)^{2}-24\left(\frac{1}{4}\right)^{3}+\cdots \\
& =3-\frac{3}{2}+\frac{3}{4}-\frac{3}{8}+\cdots
\end{aligned}
$$

$$
S=\frac{3}{1-\left(-\frac{1}{2}\right)}=\frac{3}{3 / 2}=2
$$

(d) A portion of the function $h\left(\frac{x}{2}\right)$ is above. Explain why $h\left(\frac{x}{2}\right)$ could not be the graph of $f(x)$.
$f(1)=h\left(\frac{1}{2}\right)$ which we know nothing about
$f(4)=h(2)$ which is shown on the graph
$f(4)=-\frac{9}{4}<0 \quad h(2)<0$
$f^{\prime}(4)=\frac{3}{2}>0 \quad h^{\prime}(2)>0$ because h is increasing
$f^{\prime \prime}(4)=-\frac{9}{4}<0 \quad h^{\prime \prime}(2)>0$ because h is concave up
Based on the concavity, the graph of $h\left(\frac{x}{2}\right)$ could not be the graph of $f(x)$

2020 FRQ Practice Problem BC4

BC4 A function g has derivatives of all orders for all values of x. A portion of the graph of g is shown above with the line tangent to the graph of f at $x=2$.

Let h be the function defined by $h(x)=x-2-\int_{2}^{2 x} g(t) d t$.
(a) Find the second degree Taylor polynomial $T_{2}(x)$, for $h(x)$ centered at $x=1$.

$$
\begin{array}{lr}
h(1)=((1)-2)-\int_{2}^{2(1)} g(t) d t=-1-\int_{2}^{2} g(t) d t=-1 & T_{2}(x)=h(1)+h^{\prime}(1)(x-1)+\frac{h^{\prime \prime}(1)}{2!}(x-1)^{2} \\
h^{\prime}(x)=1-(g(2 x)(2))=1-2 g(2 x) & T_{2}(x)=-1+(-1)(x-1)+\frac{(-12)}{2!}(x-1)^{2} \\
h^{\prime}(1)=1-2 g(2)=1-2(1)=-1 & \\
h^{\prime \prime}(x)=-2 g^{\prime}(2 x)(2)=-4 g^{\prime}(2 x) \Rightarrow & \\
h^{\prime \prime}(1)=-4 g^{\prime}(2)=-4(3)=-12 &
\end{array}
$$

(b) Explain why $P_{2}(x)=1+3(x-2)-\frac{5(x-2)^{2}}{2!}$ could not be the second degree Taylor polynomial for $g(x)$ centered at $x=2$.
$g(2)=1 \quad g^{\prime}(2)=3$
$g(x)$ is concave up at $x=2 \Rightarrow g^{\prime \prime}(2)>0$
$P_{2}(x)$ nd degree term $=-\frac{5(x-2)^{2}}{2!} \Rightarrow g^{\prime \prime}(2)=-5$
so $P_{2}(x)$ can not be the second degree Taylor polynomial.
(c) Consider the geometric series $\sum_{n=0}^{\infty} \frac{a_{n}}{(2 n)!}$ where the first three terms of a_{n} correspond to the three terms for $T_{2}(x)$. Find $\sum_{n=0}^{\infty} \frac{a_{n}}{(2 n)!}$ when $x=0$.

$$
T_{2}(x)=-1-(x-1)-6(x-1)^{2}=a_{n}
$$

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{(2 n)!}=\frac{-1}{0!}-\frac{1}{2!}(x-1)-\frac{6}{4!}(x-1)^{2}+\cdots=-1-\frac{1}{2}(x-1)-\frac{1}{4}(x-1)^{2}+\cdots
$$

$$
x=0 \Rightarrow \sum_{n=0}^{\infty} \frac{a_{n}}{(2 n)!}=-1-\frac{1}{2}(-1)-\frac{1}{4}(-1)^{2}+\cdots=-1+\frac{1}{2}-\frac{1}{4}+\cdots
$$

$$
x=0 \Rightarrow \sum_{n=0}^{\infty} \frac{a_{n}}{(2 n)!}=\frac{-1}{1-\left(-\frac{1}{2}\right)}=\frac{-2}{2+1}=-\frac{2}{3}
$$

