
AP Computer Science A

DO’S
&

DON’TS

IMPORTANT CONCEPTS TO REVIEW AND REMEMBER

JH / RGM - 2 - 4/17/15

Random Numbers:
double ranNum = Math.random(); interval:

int ran = (int)(Math.random() * n) + start; interval:

• Write a statement that will assign a double random number in the interval [1, 5) to ranNum.

• Assume some names have been added to nameList. Assign a randomly selected value from nameList to
name. In writing this statement, you must be sure that name could be assigned any name that is stored in
nameList.

List<String> nameList = new ArrayList<String>();
String name;

• Write a statement that will produce a random integer value in the range of 1 to 20 and store it in
numChips.

int numChips;

Using REM (%) and DIV (/ with ints):
The % operator returns the remainder of a dividend and a divisor. When used with integers, / operator returns the
quotient of a dividend divided by and a divisor.

These operators can be used to isolate digits in a number or to convert from one number base to another.

Example:
int number = 1035;
int onesDigit = number % 10;
int restOfDigits = number / 10;
int tensDigit = restOfDigits % 10;

restOfDigits = restOfDigits / 10; and so on . . .

JH / RGM - 3 - 4/17/15

Initializing private instance variables:
Initializing private instance variables in a class is the responsibility of the constructor. When initializing these
variables, it is important to remember that they have already been declared. DO NOT REDECLARE PRIVATE
INSTANCE VARIABLES!

public class Date
{
 private int month;
 private int day;
 private int year;

 public Date(int m, int d, int y)
 {

 }
 . . .
}

JH / RGM - 4 - 4/17/15

Initializing arrays and lists in constructors:

When an array or a list is a private instance variable in a class, initializing the array or list is the responsibility of the
constructor (or constructors). This usually involves instantiating the array or list.

public class HorseBarn
{
 private Horse[] barn;

 public HorseBarn(int numStalls)
 {

 }
 . . .
}

public class CustomerList
{
 private List<Customer> customers;

 public CustomerList()
 {

 }
 . . .
}

public class AnswerSheets
{
 private boolean[][] sheets;

 public AnswerSheets(int nr, int nc)
 {

 }
 . . .
}

public class CustomerList
{
 private List <Customer> customers;

 public CustomerList(Customer[] list)
 {

 }
 . . .
}

public class StudentRoster
{
 private String[] roster;

 //copy the names from chart to roster
 public StudentRoster(String[][] chart)
 {

 }
 . . .
}

JH / RGM - 5 - 4/17/15

Loops and Lists/Arrays: for vs while
When using a for loop, the for loop heading contains the loop control variable initialization, the test, and the loop
control variable update. It is bad form to adjust the value of the loop control variable in the for loop. If the update
in the body is conditional, consider using a while loop or in the case of removing items from a list, go backwards!

public class NameList
{
 private List<String> names;
 . . .

 public void removeAll(String name)
 {
 for (int k = 0; k < names.size(); k++)
 {
 if (name.equals(names.get(k))
 {
 names.remove(k);
 k--; //bad form!!!!!!!!!
 }
 }
 }
}

public class NameList
{
 private List<String> names;
 . . .

 public void removeAll(String name)
 {
 int i = 0;
 while (i < names.size())
 {
 if (name.equals(names.get(i))
 names.remove(i);
 else
 i++; //conditional update
 }
 }
}

public class NameList
{
 private List<String> names;

 . . .

 //going backwards
 public void removeAll(String name)
 {
 for (int k = names.size() - 1; k >= 0; k--)
 {
 if (name.equals(names.get(k))
 names.remove(k);
 }
 }
}

Why does this code sometimes fail to remove all the
occurrences of name?

public void removeAll(String name)
{
 for (int k = 0; k < names.size(); k++)
 {
 if (name.equals(names.get(k))
 {
 names.remove(k);
 }
 }
}

Common Algorithms: Lists and Arrays

Inserting a new item into a sorted list: This is a search algorithm. You need to search the list to find where to insert a
new item so that the list remains sorted after the insertion is done.

Any search in an array or list must check:

• is there more data in the array/list to process
• has the target item been found

If there is no more data left in the list to search, the search must stop. If there is more data, then the search
continues and you must compare the target to the list's current item to see if the target should be inserted at the
item's index or not. Notice that the check for more data MUST be done before comparing an item at a given index in
the list to the target. Why?

What is short-circuiting and how does it work in Java?

JH / RGM - 6 - 4/17/15

 Explain how short circuiting will avoid a runtime exception in the following example.

 Assume that a, b, and n are int variables and have been initialized.

if (a != b && (n / (a – b)) > 90)

public class NameList //while loop implementation
{
 private List<String> names;

 // precondition: names is in ascending order
 // postcondition: newName has been inserted into names, names is in ascending order
 public void insert(String newName)
 {
 int index = 0;
 while (index < names.size() && newName.compareTo(names.get(index)) > 0)
 index++;
 names.add(index, newName);
 }
 . . .
}

What makes this while loop stop?

Where is newName inserted and how can you be sure that the list is still sorted once the insertion has been done?

General algorithm of the while loop version of the insert:

JH / RGM - 7 - 4/17/15

public class NameList //for loop implementation
{
 private List<String> names;

 // precondition: names is in ascending order
 // postcondition: newName has been inserted into names, names is in ascending order
 public void insert(String newName)
 {
 for (int k = 0; k < names.size(); k++)
 {
 if (newName.compareTo(names.get(k) <= 0)
 {
 names.add(k, newName);
 return;
 }
 }
 names.add(newName);
 }
 . . .
}

What makes this for loop stop?

Where is newName inserted and how can you be sure that the list is still sorted once the insertion has been done?

General algorithm of the for loop insert:

Compare the two implementations of the insert method. Which implementation has fewer special cases to code?

JH / RGM - 8 - 4/17/15

Finding the min or the max in a list or array: This is a type of search algorithm.

To find the min (or max) value in a list or array:

• Assume that the first item in the list or array is the min and assign that value to a variable that will store the
current min value

• Go through the list and compare the current min value to each item in the list or array. If an item in the array
is smaller than the min, set the current min value to that item.

//precondition: temperatures.length > 0
public static double findMin(double[] temperatures)
{
 double min = temperatures[0];
 for (double temp : temperatures)
 {
 if (temp < min)
 min = temp;
 }
 return min;
}

The find min/find max algorithm frequently shows up on the AP CS A exam. Here are some recent free response
examples.

JH / RGM - 9 - 4/17/15

JH / RGM - 10 - 4/17/15

Algorithms that require comparing neighbors in an array/list:

Consider writing a method that will return true if values in a given array are in increasing order; false otherwise.
To determine this, each pair of neighbors must be compared to confirm that the left neighbor is less than or equal to
the right neighbor. If just one of these tests is fails, a value of false should be returned. To return true, you must
compare all neighbor pairs and each of those tests must confirm that the left neighbor is less than or equal to the
right neighbor.

To code this algorithm, we will first concentrate on accessing each neighbor pair and printing them without causing a
boundary error.

To do this, a loop will be required to access all neighbor pairs and you must be sure to adjust the loop boundaries so
that an ArrayIndexOutOfBoundsException will not occur.

public static void printAllNbrs(int[] nums)
{
 for (int k = 0; k < nums.length – 1; k++)
 {
 System.out.println(nums[k] + " " +
 nums[k + 1]);
 }
}
// using nums[k] and nums[k + 1]

public static void printAllNbrs (int[] nums)
{
 for (int k = ; k < _____________ ; k++)
 {
 System.out.println(nums[k - 1] + " " +
 nums[k]);
 }
 return true;
}
// using nums[k - 1] and nums[k]

Not adjusting the loop boundaries is a common mistake when writing algorithms that involve using neighboring
values in an array and will in some cases cause an out of bounds error.

JH / RGM - 11 - 4/17/15

Now we turn our attention to proving that for every neighbor pair, the left neighbor is less than the right neighbor. In
cases such as this, it turns out that it is easier to test the opposite; that for at least one neighbor pair, the left
neighbor is greater than or equal to the right neighbor. If this proves to be true, we return false, because the list is
not in increasing order. If we are not able to find any neighbor pair where the left neighbor is greater than or equal to
the right neighbor, the list must be in increasing order and we return true. You cannot return true until AFTER the
loop completes and all pairs have been compared.

public static boolean isIncreasing(int[] nums)
{
 for (int k = 0; k < nums.length – 1; k++)
 {
 if (nums[k] >= nums[k + 1])
 return false;
 }
 return true;
}
// comparing nums[k] and nums[k + 1]

public static boolean isIncreasing(int[] nums)
{
 for (int k = ; k < _____________ ; k++)
 {
 if (nums[k - 1] >= nums[k])
 return false;
 }
 return true;
}
// comparing nums[k - 1] and nums[k]

Look at these attempts to write the isIncreasing method and find the intent (logic) error in each.
public static boolean isIncreasing(int[] nums)
{
 for (int k = 0; k < nums.length – 1; k++)
 {
 if (nums[k] >= nums[k + 1])
 return false;
 else
 return true;
 }
 return true;
}

public static boolean isIncreasing(int[] nums)
{
 for (int k = 0; k < nums.length – 1; k++)
 {
 if (nums[k] < nums[k + 1])
 return true;
 }
 return false;
}

JH / RGM - 12 - 4/17/15

String Advice: When solving String problems, stay away from the char data type.

Using a char is tricky, especially when you try to concatenate two characters.

String s = 'a' + 'b'; will not create the String "ab". It will cause an "incompatible type" compiler
error because an int is being assigned to a String.

If you need to process each character of a given String, use the substring method and create substrings of
length 1.

Example: String letter = word.substring(index, index + 1);
Creates a one letter substring of the character found at index in word.

Complete the following method that returns a String with changes all occurrences of sourceLetter in str to
targetLetter.

public static String changeSource(String str, String sourceLetter, String targetLetter)
{
 String result = "";

 return result;
}

	

JH / RGM - 13 - 4/17/15

null References and the NullPointerException:
A reference variable contains the address of an object or null. If the variable contains null, you cannot
dereference the variable, i.e. call an object's method.

String s = null;
System.out.println(s.length()); //will generate a NullPointerException at
runtime

Special care should be taken when searching an array or list that contains objects to be sure that the array does not
contain any null values. If that possibility exists, you must check for null BEFORE calling an object's method.

Here is an example from the HorseBarn free response.

JH / RGM - 14 - 4/17/15

Using For-Each Loops (Enhanced for Loops) to traverse arrays and lists:

For-Each Loops access the elements of the array/list “for free,” which often provides advantages over using indexed
loops to traverse arrays/lists:

• Less code is required.
• The code is easier to read.
• A partial Free Response exam solution might score an additional point.

Here are some examples of indexed loop vs. For-Each loop traversals.

Indexed Loop Traversals For-Each Loop Traversals
public void printAll(int[] nums)
{
 // k is an index
 for (int k = 0; k < nums.length; k++)
 {
 int n = nums[k];
 System.out.println(n);
 }
}

public void printAll(int[] nums)
{
 // n is an element of nums
 for (int n : nums)
 {
 System.out.println(n);
 }
}

public void printAll(List<String> names)
{
 // k is an index
 for (int k = 0; k < names.size(); k++)
 {
 String n = names.get(k);
 System.out.println(n);
 }
}

public void printAll(List<String> names)
{
 // n is an element of nums
 for (String n : names)
 {
 System.out.println(n);
 }
}

public void printAll(String[][] names)
{
 // r & c are indexes
 for (int r = 0; r < names.length; r++)
 {
 for (int c = 0; c < names[0].length; c++)
 {
 String n = names[r][c];
 System.out.print(n + "\t");
 }
 System.out.println(); // New line
 }
}

public void printAll(String[][] names)
{
 // row is an element of String[]
 for (String[] row : names)
 {
 // n is an element of row
 for (String n : row)
 {
 System.out.print(n + "\t");
 }
 System.out.println(); // New line
 }
}

For-Each loops have some restrictions though. Never use a For-Each loop when you:

• need the indexes of elements of the array/list.
• want to traverse the array/list in a different order than front to back (lowest index to highest).
• want to add or delete elements of a list inside the loop (change the size of the list). This will result in a

ConcurrentModificationException at runtime.

JH / RGM - 15 - 4/17/15

Consider each of the paired traversal examples below.

Which is the best choice of loop to use for the task? Identify any errors.

Indexed Loop Traversals For-Each Loop Traversals
public void printAll(int[] nums)
{
 for (int k = 0; k < nums.length; k++)
 {
 System.out.println(nums[k]);
 }
}

public void printAll(int[] nums)
{
 for (int n : nums)
 {
 System.out.println(nums[n]);
 }
}

public int search(String[] names,
 String target)
{
 for (int k = 0; k < names.length; k++)
 {
 if (names[k].equals(target))
 return k;
 }
 return -1;
}

public int search(String[] names,
 String target)
{
 int index = 0;
 for (String n : names)
 {
 if (n.equals(target))
 return index;
 index++;
 }
 return -1;
}

// Return first name with less than 3 characters;
// Return null if there are no short names.
public String findShort(String[] names)
{
 for (int k = 0; k < names.length; k++)
 {
 if (names[k].length() <= 3)
 return names[k];
 }
 return null;
}

// Return first name with less than 3 characters;
// Return null if there are no short names.
public String findShort(String[] names)
{
 for (String n : names)
 {
 if (n.length() <= 3)
 return n;
 }
 return null;
}

// Remove all names with less than 3 characters.
public void removeShort(List<String> names)
{
 for (int k = names.size() - 1; k >= 0; k--)
 {
 if (names.get(k).length() <= 3)
 names.remove(k);
 }
}

// Remove all names with less than 3 characters.
public void removeShort(List<String> names)
{
 for (String n : names)
 {
 if (n.length() <= 3)
 names.remove(n);
 }
}

// Duplicate all elements in nums creating consecutive pairs.
public void doubleUp(List<Integer> nums)
{
 for (int k = 0; k < nums.size(); k += 2)
 {
 nums.add(k, nums.get(k));
 }
}

// Duplicate all elements in nums creating consecutive pairs.
public void doubleUp(List<Integer> nums)
{
 int k = 0;
 for (Integer n : nums)
 {
 nums.add(k, n);
 k += 2;
 }
}

