AP Computer Science A
KEY

DO’s
&
DON’TSs

IMPORTANT CONCEPTS TO REVIEW AND REMEMBER

Random Numbers:
[o.o0,l.0)

double ranNum = Math.random() ; interval:
int ran = (int) (Math.random() * n) + start; interval: E 31“'*’. ’f""./ +n - ’J

e Write a statement that will assign a double random number in the interval [1, 5) to ranNum.

Vathm = Mu”q,l’nw-/ow-()x’q,o + /- 0

e Assume some names have been added to nameList. Assign a randomly selected value from nameList to
name. In writing this statement, you must be sure that name could be assigned any name that is stored in

namelList.

List<String> namelist = new ArrayList<String>();
String name;

.'”-f , = [ih{‘)(Mu“‘l.l/am/om () » VMMCL(J"- size ())/'
Nerme = pnart L"!"‘J*"(',))'

e Write a statement that will produce a random integer value in the range of 1 to 20 and store it in

numChips.

int numChips;

nom Chips = (int)(Math.randon () w19 +])

Using REM (%) and DIV (/ with ints):
The % operator returns the remainder of a dividend and a divisor. When used with integers, / operator returns the
quotient of a dividend divided by and a divisor.

These operators can be used to isolate digits in a number or to convert from one number base to another.

Example:

int number = 1035;

int onesDigit = number % 10;
int restOfDigits = number / 10;

int tensDigit = restOfDigits % 10;
restOfDigits = restOfDigits / 10; andsoon...

JH/RGM -2- 4/17/15

Initializing private instance variables:

Initializing private instance variables in a class is the responsibility of the constructor. When initializing these
variables, it is important to remember that they have already been declared. DO NOT REDECLARE PRIVATE
INSTANCE VARIABLES!

public class Date
{

private int month;
private int day;
private int year;

public Date(int m, int d, int vy)
{

Monfl'l - m

W,
d(oy = 0(/
YCar: 7//'

JH/RGM -3- 4/17/15

Initializing arrays and lists in constructors:

When an array or a list is a private instance variable in a class, initializing the array or list is the responsibility of the
constructor (or constructors). This usually involves instantiating the array or list.

J
public class HorseBarn public class CustomerList
{ {
private Horse[] barn;

private List<Customer> customers;
public HorseBarn (int numStalls)

public CustomerList ()
{

i
bava = n C""“"’"'V’ = hew

ew .)
H°V$C [nUMS-"A”{]/ Avv.ytn-‘ <Gs"¢m0¢>(7/

} }

public class AnswerSheets public class CustomerList
{

{
private boolean[][] sheets;

private List <Customer> customers;
public AnswerSheets (int nr, int nc)

{

public CustomerList (Customer /(]
{ w’
mev § = ne

;Leeh = custe s

v vwel’ Avvey Lilﬂ,'((u{"om" 7 (‘)';
hew 6oolfa~[V][J/ Lo ((u:"ow'v c /I.‘_/)

(vg'fo mevs. add (e)/

list)

public class StudentRoster
{

private String[] roster;

//copy the names from chart to roster
public StudentRoster (Stringl[][]

chart)
{

r 'ICV S new S'Ivivvj [cLaV‘I. /'")'/4 » CA.,‘/[OJ_ /4,"’/4_7/!
l'll'l iuJex = 0/’
‘folf (S{'n‘”JZj Vew 'o' cL‘v){)
L (;f/.’v.’ PRI
f rosfev ["“/'7'] 2y

o.n/(y f‘f '/

\A/

JH/RGM 4/17/15

Loops and Lists/Arrays: for vs while
When using a for loop, the for loop heading contains the loop control variable initialization, the test, and the loop
control variable update. It is bad form to adjust the value of the loop control variable in the for loop. If the update

in the body is conditional, consider using a while loop or in the case of removing items from a list, go backwards!

public class Namelist

{

private List<String> names;

public void removeAll (String name)

{

public class Namelist

{

private List<String> names;

public void removeAll (String name)

{

{
if (name.equals (names.get (k))
names.remove (k) ;

for (int k = 0; k < names.size(); k++) int 1 = 0;
{ while (i < names.size())
if (name.equals (names.get (k)) {
{ if (name.equals (names.get (1))
names.remove (k) ; names.remove (i) ;
k--; //bad form!!tttttrin else
} i++; //conditional update
} }
} }
} }
public class NameList Why does this code sometimes fail to remove all the
{ occurrences of name?
private List<String> names;
public void removeAll (String name)
{
for (int k = 0; k < names.size(); k++)
//going backwards {
public void removeAll (String name) if (name.equals (names.get (k))
{ {
for (int k = names.size() - 1; k >= 0; k--) names.remove (k) ;

}
)} BEcAvSE wHEr AV EEMeAT
IS QCLETED | THE N7

o~l 'Supes Wown " Ary

Common Algorithms: Lists and Arrays

[Sng cHeckr p.

Inserting a new item into a sorted list: This is a search algorithm. You need to search the list to find where to insert a

new item so that the list remains sorted after the insertion is done.

Any search in an array or list must check:

e isthere more data in the array/list to process

e has the target item been found

If there is no more data left in the list to search, the search must stop. If there is more data, then the search
continues and you must compare the target to the list's current item to see if the target should be inserted at the
item's index or not. Notice that the check for more data MUST be done before comparing an item at a given index in
the list to the target. Why?

THE TeyT mvs7 B¢ BeFort

FHWRT - 1 RCNUTING CAN PREVENT

Accel) fo
0&IE

THE THAT

THE

What is short-circuiting and how does it work in Java? val VAT~ EXPRESS lo~vJ w i TH

AVA |Is LAZ wHe~r € .
Ill or 44 ogc(? |t DeTern sty THE F//w;/l; . V-A“.,;I,if
o X l’/.z f1or | T S7o7) EVAL N~y THE ExfL .
JH/RrRem (T He I ; 7 it

Explain how short circuiting will avoid a runtime exception in the following example.
Assume that a, b, and n are int variables and have been initialized.

if (a !'= b & (n/ (a - b)) > 90) /
|IE a==06 THEN WE HAVE /C.-IR dd ... wtrhed IS /4414. IJNVA

UStsS SHmT- cinenn~ré To PREVEAT THE AAR LI 87/ Z o
(vV A= a-6 I 2(-\40)
)

public class NameList //while loop implementation
{

private List<String> names;

// precondition: names is in ascending order

// postcondition: newName has been inserted into names, names is in ascending order
public void insert (String newName)

{

int index = 0;
while (index < names.size () && newName.compareTo (names.get (index)) > 0)
index++;

names.add (index, newName) ;

}

What makes this while loop stop} ’
IT $TolJ wHow~ M/hf > emes. 126 0) J

new Nawe . conprst 7o (nom'l, 74/ (/v-/ly)) (5 0)

IN oTHER wervj IT sro// wHer ,’..,/47(conTA I~
TH PaSITIN wHC Lt new MName SHhwesd LE INSERTED,

Where is newName inserted and how can you be sure that the list is still sorted once the insertion has been done?

IT 1S 10S6n7e2 AT pPor171on Ju.{ex. .'.-.th 1§ THE CinAve”
PONT~ BccavSlr

. TIC FACT THAT THE while comwrro~ wal ‘7‘"'{ PR PoyITIe~
‘wley =1 PMeaA~) THAT 1T Cet/ AFTLR index ~| .

- ‘l!vu; FAacT ,‘an'f THC wlh'lc Cor P T)en 1S /q/JA'FM P00 174~
‘wdev puam) TA7 (T Covs BEFAY oR AT index,

General algorithm of the while loop version of the insert:

= Ivnacizé jnlex TO 0,

- ~ ro?
—wHILE wlae 1S poT THE QAT Posi7ro~ TV (NIvIT7,
[P R EMenT :‘V'J‘l’//'

SN ST AT yaderx .

JH/RGM 4/17/15

public class NamelList //for loop implementation
{

private List<String> names;

// precondition: names is in ascending order

// postcondition: newName has been inserted into names, names is in ascending order
public void insert (String newName)
{
for (int k = 0;
{
if
{

k < names.size(); k++)
(newName .compareTo (names.get (k) <= 0)

names.add (k, newName) ;
return;
}
}

names.add (newName) ;

}

}
What makes this for loop stop?

\T s7ors wHuv (k& nanes . Siz22()) im0 oTHnt

wonrv) e kP2 paney. size () wHI<H mear/
THAT Kk S ouT OfF Youws),

Where is newName inserted and how can you be sure that the list is still sorted once the insertion has been done?
e 1T 1f Seadtg seolipb THL Lw/ ITS 1~ 7HE
Conmoe? PlAace , THE JUITIF lea Tronr IS Str21L A2
7o e ort o~ T pLCVIV) LAY
1E 1T 1§ 1~oseaTe)d AF7A T Loo// THen 17 Bruwnt)
AT TNE ¢~ widied If WHore 1T 1S N fia 7o,

General algorithm of the for loop insert:

Fove EACH K Fum O TOo name; size () eExcevswi | IF

K IS THE conrect PONITION To sefead | THewm profea”
Ar? ReT-anN,

(E THe 1TEM ””IA"/ GO Birerr: A=Y 1T THe~
(T GovsS A1 THY 9., 9 Auv7 (T THC1cC,

Compare the two implementations of the insert method. Which implementation has fewer special cases to code?

THEC widnt Loo/ /HAS o SNl caseS,

JH/RGM 4/17/15

Finding the min or the max in a list or array: This is a type of search algorithm.
To find the min (or max) value in a list or array:

e Assume that the first item in the list or array is the min and assign that value to a variable that will store the
current min value

e Go through the list and compare the current min value to each item in the list or array. If an item in the array
is smaller than the min, set the current min value to that item.

//precondition: temperatures.length > 0
public static double findMin (double[] temperatures)
{
double min = temperatures[0];
for (double temp : temperatures)
{
if (temp < min)
min = temp;
}

return min;

The find min/find max algorithm frequently shows up on the AP CS A exam. Here are some recent free response
examples.

(b) Write the Trip method getShortestLayover. A layover is the number of minutes from
the arrival of one flight in a trip to the departure of the flight immediately after it. If there are two or more
flights in the trip, the method should return the shortest layover of the trip; otherwise, it should return -1.

For example, assume that the instance variable flights ofa Trip object vacation contains the
following flight information.

Departure Arrival Layover
Time Time (minutes)
Flight 0 11:30 am. | 12:15 p.m.
+ 60
Flight 1 [:15 p.m. 3:45 p.m.
P15
Flight 2 4:00 p.m. 6:45 p.m.
b 210
Flight 3 10:15 p.m. | 11:00 p.m.

The call vacation.getShortestLayover () shouldreturn 15.

JH/RGM -8- 4/17/15

(b) Write the BatteryCharger method getChargeStartTime that returns the start time that will
allow the battery to be charged at minimal cost. If there is more than one possible start time that produces
the minimal cost, any of those start times can be returned.

For example, using the rate table given at the beginning of the question, the following table shows the
resulting minimal costs and optimal starting hour of several possible charges.

Hours of Charge Minimum Cost Start Hour of Last Hour of Charge
Time Charge

1 40 12 12
0 1

2 110 or
23 0 (the next day)

7 550 22 4 (the next day)

30 3,710 22 3 (two days later)

Assume that getChargingCost works as specified, regardless of what you wrote in part (a).

Complete method getChargeStartTime below.

/** Determines start time to charge the battery at the lowest cost for the given charge time.
* @param chargeTime the number of hours the battery needs to be charged

* Precondition: chargeTime > 0
* @return anoptimal start time, with 0 < returned value < 23
*/

public int getChargeStartTime (int chargeTime)

(b) Write the method getLongestRun that takes as its parameter an array of integer values representing a
series of number cube tosses. The method returns the starting index in the array of a run of maximum size. A
run is defined as the repeated occurrence of the same value in two or more consecutive positions in the
array.

For example, the following array contains two runs of length 4, one starting at index 6 and another starting at
index 14. The method may return either of those starting indexes.

If there are no runs of any value, the method returns -1.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Result |1 |55 (4 (3|1 |(2|2]2]|]2]|]6|1]3|3|5|5(|[5]5

Complete method getLongestRun below.

/** Returns the starting index of a longest run of two or more consecutive repeated values
* inthe array values.
* @param values an array of integer values representing a series of number cube tosses

* Precondition: values.length > 0

* @return the starting index of a run of maximum size;
* -1 if there is no run

*/

public static int getLongestRun(int[] values)

JH/RGM -9- 4/17/15

Algorithms that require comparing neighbors in an array/list:

Consider writing a method that will return t rue if values in a given array are in increasing order; false otherwise.

To determine this, each pair of neighbors must be compared to confirm that the left neighbor is less than or equal to

the right neighbor. If just one of these tests is fails, a value of false should be returned. To return true, you must

compare all neighbor pairs and each of those tests must confirm that the left neighbor is less than or equal to the

right neighbor.

To code this algorithm, we will first concentrate on accessing each neighbor pair and printing them without causing a

boundary error.

To do this, a loop will be required to access all neighbor pairs and you must be sure to adjust the loop boundaries so

that an ArrayIndexOutOfBoundsException will not occur.

{
for (int k = 0; k < nums.length - 1;
{
System.out.println (nums(k] + " " +
nums [k + 1]);
}
}

// using nums [k] and nums([k + 1]

public static void printAllNbrs(int[] nums)

k++)

public static void printAllNbrs (int[] nums)

{
for (int k =l ;s k <humg Itnq"‘ ; kt++)
['4

{

System.out.println(nums(k - 1] + " " +
nums [k]) ;
}
return true;

}

// using nums[k - 1] and nums[k]

Not adjusting the loop boundaries is a common mistake when writing algorithms that involve using neighboring

values in an array and will in some cases cause an out of bounds error.

JH/RGM

-10 -

4/17/15

Now we turn our attention to proving that for every neighbor pair, the left neighbor is less than the right neighbor. In

cases such as this, it turns out that it is easier to test the opposite; that for at least one neighbor pair, the left

neighbor is greater than or equal to the right neighbor. If this proves to be true, we return false, because the list is

not in increasing order. If we are not able to find any neighbor pair where the left neighbor is greater than or equal to

the right neighbor, the list must be in increasing order and we return true. You cannot return true until AFTER the

loop completes and all pairs have been compared.

public static boolean isIncreasing(int[] nums) public static boolean isIncreasing(int[] nums)
{ {
for (int k = 0; k < nums.length - 1; k++) for (int k =|_; k <”"“‘“ . I?n,”‘ ; k++)
{ {
if (nums[k] >= nums[k + 117) if (nums[k - 1] >= nums[k])
return false; return false;
} }
return true; return true;
} }
// comparing nums [k] and nums[k + 1] // comparing nums[k - 1] and nums[k]
Look at these attempts to write the isIncreasing method and find the intent (logic) error in each.
public static boolean isIncreasing(int[] nums) public static boolean isIncreasing(int[] nums)
{ {
for (int k = 0; k < nums.length - 1; k++) for (int k = 0; k < nums.length - 1; k++)
{ {
if (nums[k] >= nums[k + 117) if (nums[k] < nums[k@
return false; return true;
else }
return true; return false
} }
return tru/
}
/ /
Lo r) ‘fv vt IF AN)Y
vans Re
ALWAYS RCETuaNI, 7 pUT
v .
oty THe cinsr Pnil P 1S coln
. cCwp T
0 ¢ nnt) 1
(5 THIW, LooP /¥ J /L L
PO comfleql, Qe conAOCT,
JH/RGM -11- 4/17/15

String Advice: When solving String problems, stay away from the char data type.
Using a char is tricky, especially when you try to concatenate two characters.

String s = 'a' + 'b'; will notcreatethe String "ab". It will cause an "incompatible type" compiler

error because an int is being assigned toa String.

If you need to process each character of a given String, use the substring method and create substrings of
length 1.

Example: String letter = word.substring(index, index + 1);

Creates a one letter substring of the character found at index in word.

Complete the following method that returns a St ring with changes all occurrences of sourcelLetterinstrto

targetlLetter.

public static String changeSource (String str, String sourceletter, String targetlLetter)

{

Lov (ind 1 . fe-
l'/((!'IV. S“é!lf"ﬁj (') ‘+') . e,u'\/) (Sauv(f /fﬁ"’))

rewslt 4= fd'y"ll'ﬂh/. L, ,
Q‘R y(‘d/f +‘. ‘Iv. {'déf“':"; (’/ I+')/

String result = ""; . . !
7 » C & stv. Jeay 14 €2 Y.

return result;

JH/RGM -12 - 4/17/15

null References and the NullPointerException:
A reference variable contains the address of an object or nul1l. If the variable contains nul1l, you cannot
dereference the variable, i.e. call an object's method.

String s = null;
System.out.println(s.length()); //will generate a NullPointerException at
runtime

Special care should be taken when searching an array or list that contains objects to be sure that the array does not
contain any null values. If that possibility exists, you must check for nul1 BEFORE calling an object's method.

Here is an example from the HorseBarn free response.

2012 AP° COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

Complete method findHorseSpace below.

/** Returns the index of the space that contains the horse with the specified name.
* Precondition: No two horses in the barn have the same name.
* @param name the name of the horse to find
* @return the index of the space containing the horse with the specified name;
* -1 if no horse with the specified name is in the barn.
*/

public int findHorseSpace (String name)

U (it ko K4 spaces Neagth) k27)

] o (spces [KT 1= moll 44

Nawe . ?lwlj(s'pow/[k].7‘+N“"‘2()))

{
3

Vf'l’\/\/'/\ k /

§ .

yetoen ()

3

JH/RGM -13- 4/17/15

Using For-Each Loops (Enhanced for Loops) to traverse arrays and lists:

For-Each Loops access the elements of the array/list “for free,” which often provides advantages over using indexed

loops to traverse arrays/lists:

e Lesscodeis required.

e The code is easier to read.

e A partial Free Response exam solution might score an additional point.

Here are some examples of indexed loop vs. For-Each loop traversals.

Indexed Loop Traversals

For-Each Loop Traversals

public void printAll (int[] nums)
{
// k is an index
for (int k = 0; k < nums.length; k++)
{
int n = nums[k];
System.out.println (n);
}
}

public void printAll (int[] nums)
{

// n is an element of nums

for (int n : nums)

{

System.out.println (n);

}

}

public void printAll (List<String> names)
{
// k is an index
for (int k = 0; k < names.size(); k++)
{
String n = names.get (k);
System.out.println (n);
}
}

public void printAll (List<String> names)
{

// n is an element of nums

for (String n names)

{

System.out.println (n);

}

}

public void printAll (String[][] names)
{
// r & ¢ are indexes
for (int r = 0; r < names.length; r++)
{
for (int ¢ = 0; ¢ < names[0].length; c++)
{
String n = names|[r][c];
System.out.print(n + "\t");
}
System.out.println(); // New line

public void printAll (String[][] names)
{
// row is an element of String[]
for (String[] row names)
{
// n is an element of row
for (String n : row)
{
System.out.print(n + "\t");
}
System.out.println(); // New line

For-Each loops have some restrictions though. Never use a For-Each loop when you:

e need the indexes of elements of the array/list.

e want to traverse the array/list in a different order than front to back (lowest index to highest).

e want to add or delete elements of a list inside the loop (change the size of the list). This will result in a

ConcurrentModificationException at runtime.

JH/RGM -14 -

4/17/15

Consider each of the paired traversal examples below.

Which is the best choice of loop to use for the task? Identify any errors.

Indexed Loop Traversals

For-Each Loop Traversals

public void printAll (int[]
{

nums) ﬂf’7 607

k < nums.length; k++)

for = 0;

{

(int k =
System.out.println (nums([k]) ;
}
}

public void printAll (int[] nums)
{ paunr worK, 71

for (int n : nums))¢ A YALve o7

{ a,—t ~dex !
System.out.prin n@-;

} N

}

public int search(String[] names,
String target)

BesT
{

for = 0;

{

(int k

k < names.length; k++)

if (names[k]

return k;

.equals (target))

}

return -1;

public int search(String[] names,
String target)
{

int index = 0;
for (String n names)
{
if (n.equals(target))

return index;
index++;
}

return -1;

}

// Return first name with less than 3 characters;
// Return null if there are no short names.
public String findShort (Stringl]

{

names)

for

{

(int k = 0; k < names.length; k++)

if (names[k].length()

return names[k];

<= 3)

}

return null;

}

// Return first name with less than 3 characters;
// Return null if there are no short names.
public String findShort (Stringl]

{

BEsT

names)

for

{

(String n names)

if (n.length() <= 3)

return n;

}

return null;

}

// Remove all names with less than 3 characters. B E}‘r ! '
public void removeShort (List<String> names)

{

for = names.size() - 1; k >= 0; k--)

{

(int k

if (names.get (k) .length()

names.remove (k) ;

<= 3)

}
}

// Remove all names with less than 3 characters.
public void removeShort (List<String> names)

{

for names)

{

(String n
if (n.length() <= 3)
names.remove (n) ;

}
}

// Duplicate all elements in nums creating consecutive pairs.
public void doubleUp (List<Integer> nums)

{

0; k < nums.size(); k += 2

. gest !

for

{

(int k

nums.add (k, nums.get (k))

}

// Duplicate all elements in nums creating consecutive pair:
public void doubleUp (List<Integer> nums)

{

int k = 0;
for (Integer n nums)
{

nums.add (k, n);

k += 2;

}

___———"————””'

(NG""‘M OF THeSC woRIK. Yov AWRE

T0 cHa~vect: THE S12¢

FeR -€ACH Loop.

NeT ALowtd
o A

O0F A LisT nS19F

TS <cavrc s A

(on c.aylen"' Mo!/’,c‘lfo-— éX(Cf fmn RurTin T L

JH/RGM -15-

4/17/15

