AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: All Units	Free Response Question Stem Types	Date: April 27, 2020
	Tabular	

x	1	2	3	4	5
f'(x)	62	30	20	15	12

BC1: The function f is twice differentiable for $x \ge 1$ where f(5) = -6. Selected values of the positive and decreasing function f', the derivative of f, are given in the table above. The graph of f' has horizontal asymptote y = 0.

The series $\sum_{n=1}^{\infty} a_n$ is defined where $a_n = f'(n)$.

(a) Use a right Riemann sum with the four subintervals indicated in the table to approximate f(1). Is this approximation an over or under estimate of f(1)? Give a reason for your answer.

(b) Evaluate
$$\int_{1}^{\infty} f''(x) dx$$
.

(c) If
$$\int_{1}^{5} x f^{''}(x) dx = -100$$
, find $f(1)$.

x	1	2	3	4	5
f'(x)	62	30	20	15	12

BC1: The function f is twice differentiable for $x \ge 1$ where f(5) = -6. Selected values of the positive and decreasing function f', the derivative of f, are given in the table above. The graph of f' has horizontal asymptote y = 0.

The series $\sum_{n=1}^{n} a_n$ is defined where $a_n = f'(n)$.

(**d**) Determine if the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges or diverges. Explain your reasoning.

(e) Consider the series $\sum_{n=1}^{\infty} b_n$ where $(1 + 2^{a_n})b_{n+1} = (a_n)! b_n$. Use the ratio test to determine if the series $\sum_{n=1}^{\infty} b_n$ converges or diverges.

Free Response Questions Stem Types: Tabular

2020 FRQ Practice Problem BC2

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
<i>g</i> (<i>x</i>)	5	4	10	12	16
g'(x)	-4	5	4	3	1

- **BC2**: The functions f and g are twice differentiable for all values of x. Selected values of f, g and their derivatives f' and g' are given in the table above.
- (a) Let y = Q(t) be the particular solution to the logistic differential equation $\frac{dy}{dt} = 3y(g(4) y)$. Find the rate when Q(t) is increasing the fastest.

A large grocery store, customers are entering and exiting the checkout lines. At time t = 4 minutes, there are 84 people waiting in line so the manager decides to open up several more checkout lanes. For $4 \le t \le 8$ minutes, the rate that customers enter a check out line is given by f'(t) and the rate that customers exit a check out line is given by g'(t) where f' and g' are measured in people per minute.

(**b**) Is the number of customers in line increasing or decreasing at time t = 4 minutes?

(c) Find the number of customers in line at time t = 8 minutes.

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
g(x)	5	4	10	12	16
g'(x)	-4	5	4	3	1

(**d**) Let $s(x) = \frac{g(x)}{3x}$. Find s'(2).

Let
$$H(x) = 3x + \int_{1}^{x^2} g(x) \, dx.$$

(**e**) Find $H^{'}(2)$ and $H^{''}(2)$.

(**f**) Find the second degree Taylor polynomial for H(x) centered at x = -1.

x	1	2	3	4	5
f'(x)	62	30	20	15	12

BC3: The function f is twice differentiable for $x \ge 1$ where f(5) = -6. Selected values of the positive and decreasing function f', the derivative of f, are given in the table above. The graph of f' has horizontal asymptote y = 0.

The series $\sum_{n=1}^{\infty} a_n$ is defined where $a_n = f'(n)$. (a) Evaluate $\int_{-1}^{0} f''(1-3x)dx$.

(b) Evaluate
$$\int_{5}^{\infty} f^{''}(x) \sin\left(f^{'}(x)\right) dx.$$

(c) Write an equation of the line tangent to f(x) at x = 5. Use the tangent line to approximate f(5.1).

The problem has been restated.

x	1	2	3	4	5
f'(x)	62	30	20	15	12

BC3: The function f is twice differentiable for $x \ge 1$ where f(5) = -6. Selected values of the positive and decreasing function f', the derivative of f, are given in the table above. The graph of f' has horizontal asymptote y = 0.

The series $\sum_{n=1}^{\infty} a_n$ is defined where $a_n = f'(n)$.

(d) Use Euler's method, starting at x = 5 with two steps of equal size, to approximate f(3).

(e) Use a left Riemann sum with the four subintervals indicated in the table to approximate the arc length of f(x) over the interval x = 1 to x = 5.

(**f**) For
$$x \ge 6$$
, $f'(x) = \frac{100}{2^x}$. Find $\sum_{n=6}^{\infty} a_n$.

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
<i>g</i> (<i>x</i>)	5	4	10	12	16
g'(x)	-4	5	4	3	1

- **BC4**: The functions f and g are twice differentiable for all values of x. Selected values of f, g and their derivatives f' and g' are given in the table above.
- (a) Let *k* be the function defined by $k(x) = \begin{cases} f'(g(x)), & x \le 1\\ x + \cos(f(x)), & x > 1 \end{cases}$. Is *k* continuous at x = 1? Why or why not?

(**b**) Let h(x) = f(g(2x)). Find h'(1).

(c) Find
$$\int_{2}^{4} f'(2x-3) dx$$
.

The problem has been restated.

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
g(x)	5	4	10	12	16
g'(x)	-4	5	4	3	1

- **BC4**: The functions f and g are twice differentiable for all values of x. Selected values of f, g and their derivatives f' and g' are given in the table above.
- (d) Use Euler's method with two steps of equal size starting at x = 1 to approximate f(3).

A large grocery store, customers are entering and exiting the checkout lines. At time t = 4 minutes, there are 84 people waiting in line so the manager decides to open up several more checkout lanes. For $4 \le t \le 8$ minutes, the rate that customers enter a check out line is given by f'(t) and the rate that customers exit a check out line is given by g'(t) where f' and g' are measured in people per minute.

(e) Approximate $f^{''}(4.5)$. Using correct units, interpret the meaning of this value in context of the problem.

(f) Is there a time t for 4 < t < 8 such that the number of customers in line is not changing? Give a reason for your answer.

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
<i>g</i> (<i>x</i>)	5	4	10	12	16
<i>g</i> ′(<i>x</i>)	-4	5	4	3	1

BC5: The functions f and g are twice differentiable for all values of x. Selected values of f, g and their derivatives f' and g' are given in the table above.

(a) Let $m(x) = f(x^3)$. Find m'(2).

(**b**) Evaluate $\lim_{x \to 5} \frac{g(f(x)) - x}{x^2 - 25}$.

(c) Find $\int_1^8 x g''(x) dx$.

(**d**) Let p(x) = g(f'(x)). Use a right Riemann sum with three subintervals indicated in the table to approximate $\int_{2}^{8} p(x) dx$.

The problem has been restated.

x	1	2	4	5	8
f(x)	-1	4	0	1	7
$f^{'}(x)$	-6	0	1	2	4
g(x)	5	4	10	12	16
g'(x)	-4	5	4	3	1

BC5: The functions f and g are twice differentiable for all values of x. Selected values of f, g and their derivatives f' and g' are given in the table above.

For $t \ge 1$, particles *P* and *Q* move along the *x* axis with velocities f(t) and g(t) respectively. At time t = 1, particle *P* is at position x = 4 and particle *Q* is at position x = -2.

(e) Use a left Riemann sum with the three subintervals indicated in the table to approximate the position of particle *P* at time t = 8.

(f) At t = 1, are particles *P* and *Q* moving toward or away from each other? Explain your reasoning

(g) Is particle Q speeding up or slowing down at time t = 1? Give a reason for your answer.