TRUTH TABLE AND LOGIC REFERENCE SHEET

p	q	Negation $\sim p$	Conjunction $p \wedge q$	Disjunction $p \vee q$	Conditional $\boldsymbol{p} \rightarrow \boldsymbol{q}$	Biconditional $p \leftrightarrow q$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T
Not p Opposite truth values from p			p and q True only when BOTH p and q are true	p or q False only when BOTH p and d are false	If p, then q False only when p is true and q is false	If and only if p, then q True only when p and q have the same truth value

Two statements are equivalent if they have the same truth value in all cases.

Variations of the Conditional Statement $\boldsymbol{p} \rightarrow \boldsymbol{q}$

- $p \rightarrow q$ is equivalent to $\sim q \rightarrow \sim p$, the contrapositive:

$$
p \rightarrow q \equiv \sim q \rightarrow \sim p
$$

- $p \rightarrow q$ is NOT equivalent to $q \rightarrow p$, the converse
- $p \rightarrow q$ is NOT equivalent to $\sim p \rightarrow \sim q$, the inverse
- The negation of $p \rightarrow q$ is $p \wedge \sim q: \sim(p \rightarrow q) \equiv p \wedge \sim q$

De Morgan's Laws

$-\sim(p \wedge q) \equiv \sim p \vee \sim q:$
The negation of $p \wedge q$ is $\sim p \vee \sim q$

- $\sim(p \vee q) \equiv \sim p \wedge \sim q:$

The negation of $p \wedge q$ is $\sim p \vee \sim q$

