TRUTH TABLE AND LOGIC REFERENCE SHEET

р	q	Negation ~p	Conjunction $p \wedge q$	Disjunction $p \lor q$	Conditional $p \rightarrow q$	Biconditional $p \leftrightarrow q$
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Ţ	F	F	Т	Т

Not *p*Opposite
truth values
from *p*

p and *q* True only when BOTH *p* and *q* are true

p or *q* False only when BOTH *p* and *q* are false

If *p,* then *q* False only when *p* is true and *q* is false If and only if *p*, then *q*True only when *p* and *q* have the same truth value

$$p \equiv q$$

Two statements are equivalent if they have the same truth value in all cases.

Variations of the Conditional Statement $p \rightarrow q$

- $p \to q$ is equivalent to $\sim q \to \sim p$, the contrapositive: $p \to q \equiv \sim q \to \sim p$
- $p \rightarrow q$ is NOT equivalent to $q \rightarrow p$, the converse
- $p \rightarrow q$ is NOT equivalent to $\sim p \rightarrow \sim q$, the inverse
- The negation of $p \to q$ is $p \land \sim q$: $\sim (p \to q) \equiv p \land \sim q$

De Morgan's Laws

•
$$\sim (p \wedge q) \equiv \sim p \vee \sim q$$
:

The negation of $p \wedge q$ is $\sim p \vee \sim q$

•
$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$
:

The negation of $p \wedge q$ is $\sim p \vee \sim q$

